Start Guidance
The HERE SDK enables you to build a comprehensive turn-by-turn navigation experience. With this feature, your app can check the current device location against a calculated route and get navigational instructions just-in-time.
Note
Navigation is supported for all available transport modes - except for publicTransit
. Public transit routes may lead to unsafe and unexpected results when being used for navigation.
Navigation support for bus
routes is currently limited: We expect enhancements for bus specific lane assistance and more precise turn-by-turn instructions for bus navigation in a future release of the HERE SDK.
The transport mode can vary across the Route
, for example, if you walk through a park to reach a sightseeing spot, you may need to leave a car. After the route is calculated, the transport mode is attached to each Section
of a Route
object.
For car, truck, taxi, bus and scooter routes, the location of the device will be map-matched to streets, while for other modes, such as pedestrian routes, locations may be matched to unpaved dirt roads and other paths that would not be accessible to drivers. Bicycle routes can make use of all available paths.
Even without having a route to follow, the HERE SDK supports a tracking mode, which provides information about the current street, the map-matched location and other supporting details such as speed limits.
Note that the HERE SDK provides no UI assets for maneuver arrows to indicate visual feedback. Instead, all information that is available along a route is given as simple data types, allowing you to choose your own assets where applicable.
Note
Reusable assets for use in your own applications can be found in the MSDKUI open source project from HERE - available on GitHub under this link. More reusable icons can be found in the official HERE Icon Library.
A tailored navigation map view can be optionally rendered with the VisualNavigator
. Once startRendering()
is called, it will add a preconfigured MapMarker3D
instance in form of an arrow to indicate the current direction - and incoming location updates are smoothly interpolated. In addition, the map orientation is changed to the best suitable default values.
The preconfigured MapMarker3D
instance can also be customized by setting your own model - or it can be disabled. Internally, the VisualNavigator
uses a LocationIndicator
instance and thus you can set also a custom LocationIndicator
to the VisualNavigator
. When this is done, you also need to manually add, remove and update the instance. Similar, as when you already use a LocationIndicator
instance on the map view, see the related map items section.
By default, the style of the LocationIndicator
will be determined from the transport mode that can be set for the VisualNavigator
. If a route is set, then it is taken from the route instance instead. If a custom asset is used, then the style must be switched directly via the LocationIndicator
class.
Note
The NavigationCustom example app shows how to switch to a custom LocationIndicator
and to a different type when navigation has stopped. It also shows how the navigation perspective can be customized.
Voice guidance is provided as maneuver notifications that can be fed as a String
into any platform TTS (Text-To-Speech) solution.
Note
Offline guidance is supported. Turn-by-turn navigation and tracking fully works offline on already cached or downloaded offline map data - as long as the route does not reach regions without cached or preloaded map data.
Turn-By-Turn Navigation
The basic principle of turn-by-turn navigation is to frequently receive a location including speed and bearing values. These values are then matched to a street and compared to the desired route. A maneuver instruction is given to let you orient where you are and where you want to go next.
When leaving the route, you can be notified of the deviation in meters. This notification can help you to decide whether or not to calculate a new route. And finally, a location simulator allows you to test route navigation during the development phase.
Note: Important
Application developers using turn-by-turn navigation are required to thoroughly test their applications in all expected usage scenarios to ensure safe and correct behavior. Application developers are responsible for warning app users of obligations including but not limited to:
- Do not follow instructions that may lead to an unsafe or illegal situation.
- Obey all local laws.
- Be aware that using a mobile phone or some of its features while driving may be prohibited.
- Always keep hands free to operate the vehicle while driving.
- Make road safety the first priority while driving.
All code snippets from the below sections are also available on GitHub as part of the Navigation example app. This app shows the code in connection and provides a testable driving experience and best practices such as keeping the screen alive during guidance. However, it does, not cover every aspect of a full-blown production-ready application. For example, the app does not show how to enable getting location updates while an app may operate in background.
If you are interested in getting background location updates, you can check the related section in the Get Locations guide.
In addition, you can also find a NavigationQuickStart app on GitHub that shows how to start guidance with just a few lines of code. See also the next section.
Get Started
Before we look into the navigation features of the HERE SDK in greater detail, lets first see a short coding example that shows how to start guidance with speakable maneuver instructions and a guidance view:
_startGuidance(HERE.Route route) {
try {
_visualNavigator = HERE.VisualNavigator();
} on InstantiationException {
throw Exception("Initialization of VisualNavigator failed.");
}
_visualNavigator!.startRendering(_hereMapController!);
_visualNavigator!.maneuverNotificationListener = HERE.ManeuverNotificationListener((String maneuverText) {
print("ManeuverNotifications: $maneuverText");
});
_visualNavigator!.route = route;
_setupLocationSource(_visualNavigator!, route);
}
_setupLocationSource(HERE.LocationListener locationListener, HERE.Route route) {
try {
_locationSimulator = HERE.LocationSimulator.withRoute(route, HERE.LocationSimulatorOptions());
} on InstantiationException {
throw Exception("Initialization of LocationSimulator failed.");
}
_locationSimulator!.listener = locationListener;
_locationSimulator!.start();
}
This code excerpt will start a guidance view and it will print maneuver instructions to the console until you have reached the destination defined in the provided route
(for the full code including declarations see the NavigationQuickStart example app.). Note that the maneuver instructions are meant to be spoken to a driver and they may contain strings like "Turn left onto Invalidenstraße in 500 meters.". More detailed maneuver instructions are also available - they are showed in the sections below.
Note that above we are using the simulation feature of the HERE SDK to acquire location updates. Of course, you can also feed real location updates into the VisualNavigator
.
The basic principles of any navigation app are:
- Create a
Route
. Without a route to follow you cannot start guidance. - Create a
VisualNavigator
instance and start rendering (or create a Navigator
instance if you want to render the guidance view on your own). - Set a
Route
to the VisualNavigator
. - Fed in location updates into the
VisualNavigator
. Without location data, no route progress along a route can be detected. This can be simulated like shown above - or you can feed real location updates.
As a quick start, take a look at the NavigationQuickStart example app on GitHub and see how this works in action. If you read on, you can learn more about the many navigation features the HERE SDK has to offer.
Note
When setting a Waypoint
you can influence on which side of the road a driver should reach the stop by setting a sideOfStreetHint
. If a driver is moving, a bearing value can help to determine the initial direction by setting the headingInDegrees
to a Waypoint
. This can help to avoid unnecessary u-turns if the next destination lies in the back of a driver. Note that this can also help to optimize routes for pedestrians, for example, to avoid unnecessary street crossings.
Use a Navigator to Listen for Guidance Events
As briefly mentioned above, before you can start to navigate to a destination, you need two things:
- A
Route
to follow. The Route
must be set to the Navigator
or VisualNavigator
instance to start navigation. - A location source that periodically tells the
Navigator
or VisualNavigator
instance where you are.
Tip: Make sure to to import the following packages to avoid name clashes with the Route / Navigator classes from Flutter:
import 'package:here_sdk/navigation.dart';
import 'package:here_sdk/routing.dart' as HERE;
Unless you have already calculated a route, create one: Getting a Route
instance is shown here. If you only want to start the app in tracking mode, you can skip this step.
Note
During turn-by-turn navigation, you will get all Maneuver
information from the Navigator
or the VisualNavigator
instance - synced with your current Location
. As long as you navigate, do not take the Manuever
data from the Route
object directly.
You have two choices to start guidance. Either by using the headless Navigator
- or with the help of the VisualNavigator
. Both provide the same interfaces, as the Navigator
offers a subset of the VisualNavigator
, but the VisualNavigator
provides visual rendering assistance on top - with features such as smooth interpolation between discrete Location
updates.
Another requirement is to provide Location
instances - as navigation is not possible without getting frequent updates on the current location. For this you can use a provider implementation that can be found on GitHub to simulate Location
events - or follow the implementation from the Get Locations guide to listen to non-simulated Location
events. This is also shown as part of the navigation_app example.
It is possible to feed in new locations either by implementing a platform positioning solution or by using the HERE SDK positioning feature or by setting up a location simulator.
The basic information flow is:
Location Provider => Location => (Visual)Navigator => Events
Note that you can set any Location
source as "location provider". Only onLocationUpdated()
has to be called on the Navigator
or VisualNavigator
.
It is the responsibility of the developer to feed in valid locations into the VisualNavigator
. For each received location, the VisualNavigator
will respond with appropriate events that indicate the progress along the route, including maneuvers and a possible deviation from the expected route. The resulting events depend on the accuracy and frequency of the provided location signals.
First off, create a new instance of our reference implementation to acquire locations:
_locationSimulationProvider = new HEREPositioningSimulator();
Next, we can create a new VisualNavigator
instance and set it as listener to the HEREPositioningSimulator
from above. Note that the VisualNavigator
class conforms to the LocationListener
interface that defines the onLocationUpdated()
method to receive locations.
try {
_visualNavigator = VisualNavigator();
} on InstantiationException {
throw Exception("Initialization of VisualNavigator failed.");
}
_visualNavigator.route = route;
_locationSimulationProvider.startLocating(route, _visualNavigator);
In addition, make sure to set the route you want to follow (unless you plan to be in tracking mode only).
Note
If you do not plan to use the VisualNavigator
's rendering capabilities, you can also use the Navigator
class instead. This class uses the same code under the hood and behaves exactly like the VisualNavigator
, but it offers no support for rendering a specialized navigation view.
As a next step you may want to attach a few listeners to get notified on the route progress, on the current location, the next maneuver to take and on the route deviation:
_visualNavigator.routeProgressListener = RouteProgressListener((RouteProgress routeProgress) {
List<SectionProgress> sectionProgressList = routeProgress.sectionProgress;
SectionProgress lastSectionProgress = sectionProgressList.elementAt(sectionProgressList.length - 1);
print('Distance to destination in meters: ' + lastSectionProgress.remainingDistanceInMeters.toString());
print('Traffic delay ahead in seconds: ' + lastSectionProgress.trafficDelay.inSeconds.toString());
List<ManeuverProgress> nextManeuverList = routeProgress.maneuverProgress;
if (nextManeuverList.isEmpty) {
print('No next maneuver available.');
return;
}
ManeuverProgress nextManeuverProgress = nextManeuverList.first;
int nextManeuverIndex = nextManeuverProgress.maneuverIndex;
Maneuver? nextManeuver = _visualNavigator.getManeuver(nextManeuverIndex);
if (nextManeuver == null) {
return;
}
ManeuverAction action = nextManeuver.action;
String roadName = _getRoadName(nextManeuver);
String logMessage = describeEnum(action) +
' on ' +
roadName +
' in ' +
nextManeuverProgress.remainingDistanceInMeters.toString() +
' meters.';
if (_previousManeuverIndex != nextManeuverIndex) {
print('New maneuver: $logMessage');
} else {
print('Maneuver update: $logMessage');
}
_previousManeuverIndex = nextManeuverIndex;
});
_visualNavigator.navigableLocationListener =
NavigableLocationListener((NavigableLocation currentNavigableLocation) {
MapMatchedLocation? mapMatchedLocation = currentNavigableLocation.mapMatchedLocation;
if (mapMatchedLocation == null) {
print('This new location could not be map-matched. Are you off-road?');
return;
}
var speed = currentNavigableLocation.originalLocation.speedInMetersPerSecond;
var accuracy = currentNavigableLocation.originalLocation.speedAccuracyInMetersPerSecond;
print("Driving speed (m/s): $speed plus/minus an accuracy of: $accuracy");
});
_visualNavigator.routeDeviationListener = RouteDeviationListener((RouteDeviation routeDeviation) {
HERE.Route? route = _visualNavigator.route;
if (route == null) {
return;
}
MapMatchedLocation? currentMapMatchedLocation = routeDeviation.currentLocation.mapMatchedLocation;
GeoCoordinates currentGeoCoordinates = currentMapMatchedLocation == null
? routeDeviation.currentLocation.originalLocation.coordinates
: currentMapMatchedLocation.coordinates;
GeoCoordinates lastGeoCoordinatesOnRoute;
if (routeDeviation.lastLocationOnRoute != null) {
MapMatchedLocation? lastMapMatchedLocationOnRoute = routeDeviation.lastLocationOnRoute!.mapMatchedLocation;
lastGeoCoordinatesOnRoute = lastMapMatchedLocationOnRoute == null
? routeDeviation.lastLocationOnRoute!.originalLocation.coordinates
: lastMapMatchedLocationOnRoute.coordinates;
} else {
print('User was never following the route. So, we take the start of the route instead.');
lastGeoCoordinatesOnRoute = route.sections.first.departurePlace.originalCoordinates!;
}
int distanceInMeters = currentGeoCoordinates.distanceTo(lastGeoCoordinatesOnRoute) as int;
print('RouteDeviation in meters is ' + distanceInMeters.toString());
});
Here we set a RouteProgressListener
, a NavigableLocationListener
and a RouteDeviationListener
.
Inside the RouteProgressListener
we can access detailed information on the progress per Section
of the passed Route
instance. A route may be split into several sections based on the number of waypoints and transport modes. Note that remainingDistanceInMeters
and trafficDelay.inSeconds
are already accumulated per section. We check the last item of the SectionProgress
list to get the overall remaining distance to the destination and the overall estimated traffic delay.
Note that the trafficDelay.inSeconds
is based upon the time when the Route
data was calculated - therefore, the traffic delay is not refreshed during guidance. The value is only updated along the progressed sections based on the initial data. Use the DynamicRoutingEngine
to periodically request optimized routes based on the current traffic situation.
Inside the RouteProgressListener
we also can access the next maneuver that lies ahead of us. For this we use the maneuverIndex
:
List<ManeuverProgress> nextManeuverList = routeProgress.maneuverProgress;
if (nextManeuverList.isEmpty) {
print('No next maneuver available.');
return;
}
ManeuverProgress nextManeuverProgress = nextManeuverList.first;
int nextManeuverIndex = nextManeuverProgress.maneuverIndex;
Maneuver? nextManeuver = _visualNavigator.getManeuver(nextManeuverIndex);
The Maneuver
information taken from visualNavigator
can be used to compose a display for a driver to indicate the next action and other useful information like the distance until this action takes place. It is recommended to not use this for textual representations, unless it is meant for debug purposes as shown in the example above. Use voice guidance instead (see below).
However, it can be useful to display localized street names or numbers (such as highway numbers), that can be retrieved as follows:
String _getRoadName(Maneuver maneuver) {
RoadTexts currentRoadTexts = maneuver.roadTexts;
RoadTexts nextRoadTexts = maneuver.nextRoadTexts;
String? currentRoadName = currentRoadTexts.names.getDefaultValue();
String? currentRoadNumber = currentRoadTexts.numbers.getDefaultValue();
String? nextRoadName = nextRoadTexts.names.getDefaultValue();
String? nextRoadNumber = nextRoadTexts.numbers.getDefaultValue();
String? roadName = nextRoadName == null ? nextRoadNumber : nextRoadName;
if (maneuver.nextRoadType == RoadType.highway) {
roadName = nextRoadNumber == null ? nextRoadName : nextRoadNumber;
}
if (maneuver.action == ManeuverAction.arrive) {
roadName = currentRoadName == null ? currentRoadNumber : currentRoadName;
}
roadName ??= 'unnamed road';
return roadName;
}
You can get the default road texts directly via currentRoadTexts.names.getDefaultValue()
, like shown above. In most cases, this will be the name of the road as shown on the local signs.
Alternatively, you can get localized texts for the road name based on a list of preferred languages via currentRoadTexts.names.getPreferredValueForLocales(locales)
. If no language is available, the default language is returned.
Note
You can use the RoadTextsListener
to get notified on the current RoadTexts
you are driving on, e.g. during tracking mode.
As the location provided by the device's GPS sensor may be inaccurate, the VisualNavigator
internally calculates a map-matched location that is given to us as part of the NavigableLocation
object. For example, a street location is expected to be on a navigable path. But it can also be off-track, in case the user has left the road - or if the GPS signal is too poor to find a map-matched location.
It is recommended to use the map-matched location to give the user visual feedback. For example, to update the current map view based on the map-matched location. Only if the location could not be map-matched, such as, when the user is off-road, it may be useful to fallback to the unmatched originalLocation
. Below we choose to use the rendering capabilities of the VisualNavigator
to automatically update the map view.
Note
Note that the Maneuver
instruction text (nextManeuver.text
) is empty during navigation when it is taken from Navigator
or VisualNavigator
. It only contains localized instructions when taken from a Route
instance. The ManeuverAction
enum is supposed to be used to show a visual indicator during navigation, and textual instructions fit more into a list to preview maneuvers before starting a trip.
In opposition, nextManeuver.roadTexts
, nextManeuver.nextRoadTexts
and nextManeuver.exitSignTexts
are meant to be shown as part of turn-by-turn maneuvers during navigation, so they are only non-empty when the Maneuver
is taken from Navigator
or VisualNavigator
. If taken from a Route
instance, these attributes are always empty.
Some roads, such as highways, do not have a road name. Instead, you can try to retrieve the road number. Keep also in mind, that there may be unnamed roads somewhere in the world.
Below table demonstrates the usage of maneuver properties:
Maneuver Properties |
RoutingEngine | Navigator / VisualNavigator | Examples |
maneuver.text | Provides a non-empty string. | Provides a non-empty string. | Example output for text : "Turn right onto Detmolder Straße towards A100.". |
maneuver.roadTexts | Provies empty strings. | Provides non-empty strings. | Example output for roadTexts.names.getDefaultValue() : "Stadtring". |
maneuver.nextRoadTexts | Provieds empty strings. | Provides non-empty strings. | Example output for nextRoadTexts.names.getDefaultValue() : "Halenseestraße". |
maneuver.exitSignTexts | Provides empty strings. | Provides non-empty strings. | Example output for exitSignTexts.getDefaultValue() : "Hamburg". |
Note
It is not required to trigger the above events yourself. Instead the VisualNavigator
will react on the provided locations as coming from the location provider implementation.
If you detect a route deviation, you can decide based on distanceInMeters
if you want to reroute users to their destination. Note that for a full route recalculation you may want to use the same route parameters. See next section for more details on how to get back to the route.
In the above example, we calculate the distance based on the coordinates contained in RouteDeviation
: distanceInMeters
. This indicates the straight-line distance between the expected location on the route and your actual location. If that is considered too far, you can set a newly calculated route to the VisualNavigator
instance - and all further events will be based on the new route.
Keep in mind, that in a drive guidance scenario, lastLocationOnRoute
and mapMatchedLocation
can be null
. If routeDeviation.lastLocationOnRoute
is null
, then the user was never following the route - this can happen when the starting position is farther away from the road network. Usually, the Navigator
/ VisualNavigator
will try to match Location
updates to a road: If a driver is too far away, the location cannot be matched.
Note
Note that previous events in the queue may still be delivered at least one time for the old route - as the events are delivered asynchronously. To prevent this, if desired, you can attach new listeners after setting the new route.
The navigation_app example shows how to detect the deviation.
Listen for Road Sign Events
Along a road you can find many shields. While driving you can receive detailed notifications on these shields by setting a RoadSignWarningListener
.
The resulting RoadSignWarning
event contains information on the shield, including information such as RoadSignType
and RoadSignCategory
.
By default, the event will be fired with the same distance threshold as for other warners:
- On highways, the event is fired approximately 2000 meters ahead.
- On rural roads, the event is fired approximately 1500 meters ahead.
- In cities, the event is fired approximately 1000 meters ahead.
With RoadSignWarningOptions
you can set a filter on which shields you want to get notified.
Some examples of priority road signs.
Note that not all road shields are included. RoadSignType
lists all supported types. For example, road signs showing speed limits are excluded, as these shields can be detected with the dedicated SpeedLimitListener
.
The below code snippet shows a usage example:
RoadSignWarningOptions roadSignWarningOptions = new RoadSignWarningOptions();
roadSignWarningOptions.vehicleTypesFilter = [RoadSignVehicleType.trucks, RoadSignVehicleType.heavyTrucks];
_visualNavigator.roadSignWarningOptions = roadSignWarningOptions;
_visualNavigator.roadSignWarningListener = RoadSignWarningListener((RoadSignWarning roadSignWarning) {
print("Road sign distance (m): ${roadSignWarning.distanceToRoadSignInMeters}");
print("Road sign type: ${roadSignWarning.type.name}");
if (roadSignWarning.signValue != null) {
print("Road sign text: ${roadSignWarning.signValue!.text}");
}
});
RoadSignWarning
events are issued exactly two times:
- When
DistanceType
is AHEAD
and distanceToRoadSignInMeters
is > 0. - When
DistanceType
is PASSED
and distanceToRoadSignInMeters
is 0.
Note
For positional warners that notify on a singular object along a road, such as a safety camera, a road sign or a realistic view, there is always only one active warning happening at a time: This means that after each ahead
event always a passed
event will follow to avoid cases where two AHEAD warnings for a single object are active at the same time.
Handle Route Deviations
As we have seen in the above section, the RouteDeviation
event can be used to detect when a driver leaves the original route. Note that this can happen accidentally or intentionally, for example, when a driver decides while driving to take another route to the destination - ignoring the previous made choices for a route alternative and route options.
As shown above, you can detect the distance from the current location of the driver to the last known location on the route. Based on that distance, an application may decide whether it's time to calculate an entire new route or to guide the user back to the original route to keep the made choices for an route alternative and route options.
The HERE SDK does not recalculate routes automatically, it only notfies on the deviation distance - therefore any logic on how to get back to the route has to be implemented on app side.
Note
Tip: The RouteDeviation
event will be fired for each new location update. To avoid unnecessary handling of the event, it may be advisable to wait for a few seconds to check if the driver is still deviating. If the event is no longer fired, it means that the driver is back on the route. Keep in mind that the route calculation happens asynchronously and that it is an app decision when and how to start a new route calculation. However, a new route can be set at any time during navigation to the Navigator
or VisualNavigator
instance and the upcoming events will be updated based on the newly set Route
instance.
It is worth to mention that there can be also cases where a user is off-road. After a new route has been set, the user may still be off-road - therefore, the user has not been able to follow the route yet: In such a case you would still receive deviation events for the newly set route and routeDeviation.lastLocationOnRoute
is null. If the current location of the user is not changing, it may be advisable to not start a new route calculation again.
The HERE SDK offers several APIs to handle route deviations:
- Recalculate the entire route with the
RoutingEngine
with new or updated RouteOptions
to provide new route alternatives. If you use the current location of the user as new starting point, make sure to also specify a bearing direction for the first Waypoint
. - Use the
returnToRoute()
method to calculate a new route to reach the originally chosen route alternative. It is available for the online RoutingEngine
and the OfflineRouteEngine
. Note that a route calculated with the OfflineRouteEngine
does no longer include traffic information. - Refresh the old route with
routingEngine.refreshRoute()
using a new starting point that must lie on the original route and optionally update the route options. Requires a RouteHandle
to identify the original route. This option does not provide the path from a deviated location back to the route, so it is not suitable for the deviation use case on its own. - On top, the HERE SDK offers the
DynamicRoutingEngine
, that allows to periodically request optimized routes based on the current traffic situation. It requires a route that was calculated online as it requires a RouteHandle
. This is engine is meant to find better routes while the user is still following the route. Therefore, it may not be the best choice for the deviation use case, although it requires the current location as input.
The 1st and 3rd option are covered in the Routing section. Note that the 3rd option to refresh the original route does not provide the path from a deviated location back to the route. Therefore, it is not covered below. However, an application may choose to use it to substract the travelled portion from the route and let users reach the new starting point on their own.
Based on parameters such as the distance and location of the deviated location an application needs to decide which option to offer to a driver.
Return to a Route After Deviation
Calculate a route online or offline that returns to the original route with the RoutingEngine
or the OfflineRoutingEngine
. Use the returnToRoute()
method when you want to keep the originally chosen route, but want to help the driver to navigate back to the route as quickly as possible.
Note
returnToRoute()
is just one possible option to handle route deviations. See above for alternative options. For example, in some cases, it may be advisable to calculate an entire new route to the user's destination.
As of now, the returnToRoute()
feature supports the same transport modes as the engine - you can use both, the OfflineRoutingEngine
and the RoutingEngine
. When executing the method with the RoutingEngine
, only public transit routes are not supported - all other available transport modes for the RoutingEngine
are supported.
Note
The returnToRoute()
of the OfflineRoutingEngine
method requires cached or already downloaded map data. In most cases, the path back to the original route may be already cached while the driver deviated from the route. However, if the deviation is too large, consider to calculate a new route instead.
The route calculation requires the following parameters:
- The original
Route
, which is available from the Navigator
/ VisualNavigator
. - For use with the
OfflineRoutingEngine
, you will also need to set the normalized fraction of the route which was already travelled along the route, which is available from the RouteDeviation
event: routeDeviation.fractionTraveled
. For the online RoutingEngine
this parameter is ignored. The fractionTraveled
parameter is based on the last known location of the driver on the route. When the user left the route, no RouteProgress
will be delivered. This value is normalized to be a value between 0 (no progress) and 1 (destination reached). The part of the route that was already travelled will be ignored by the route calculation. - The new starting
Waypoint
, which may be the current map matched location of the driver.
The new starting point can be retrieved from the RouteDeviation
event:
MapMatchedLocation currentMapMatchedLocation = routeDeviation.currentLocation.mapMatchedLocation;
GeoCoordinates currentGeoCoordinates = currentMapMatchedLocation == null
? routeDeviation.currentLocation.originalLocation.coordinates
: currentMapMatchedLocation.coordinates;
Waypoint newStartingPoint = Waypoint(currentGeoCoordinates);
With the online RoutingEngine
it can happen that a completely new route is calculated - for example, when the user can reach the destination faster than with the previously chosen route alternative. The OfflineRoutingEngine
preferrably reuses the non-travelled portion of the route.
In general, the algorithm will try to find the fastest way back to the original route, but it will also respect the distance to the destination. The new route will try to preserve the shape of the original route if possible.
Stopovers that are not already travelled will not be skipped. For pass-through waypoints, there is no guarantee that the new route will take them into consideration at all.
Optionally, you can improve the route calculation by setting the heading direction of a driver:
if (currentMapMatchedLocation != null && currentMapMatchedLocation.bearingInDegrees != null) {
newStartingPoint.headingInDegrees = currentMapMatchedLocation.bearingInDegrees;
}
Finally, we can calculate the new route:
routingEngine.returnToRoute(originalRoute, newStartingPoint, routeFractionTravelled, (routingError, routes) {
if (routingError == null) {
HERE.Route newRoute = routes.first;
} else {
}
});
Note
Since the CalculateRouteCallback
is reused, a list of routes is provided. However, the list will only contain one route. The error handling follows the same logic as for the RoutingEngine
.
As a general guideline for the online and offline usage, the returnToRoute()
feature will try to reuse the already calculated portion of the originalRoute
that lies ahead. Traffic data is only updated and taken into account when used with the online RoutingEngine
.
The resulting new route will also use the same OptimizationMode
as found in the originalRoute
.
However, for best results, it is recommended to use the online RoutingEngine
to get traffic-optimized routes.
Dynamically Find Better Routes
Use the DynamicRoutingEngine
to periodically request optimized routes based on the current traffic situation. This engine searches for new routes that are faster (based on ETA) than the current route you are driving on.
The DynamicRoutingEngine
requires an online connection and a RouteHandle
. When trying to search for a better route offline or when the RouteHandle
is not enabled, a routing error is propagated:
var routingOptions = HERE.CarOptions();
routingOptions.routeOptions.enableRouteHandle = true;
By setting DynamicRoutingEngineOptions
, you can define the minTimeDifference
before getting notified on a better route. The minTimeDifference
is compared to the remaining ETA of the currently set route. The DynamicRoutingEngineOptions
also allow to set a pollInterval
to determine how often the engine should search for better routes:
void _createDynamicRoutingEngine() {
var dynamicRoutingOptions = DynamicRoutingEngineOptions();
dynamicRoutingOptions.minTimeDifference = Duration.zero;
dynamicRoutingOptions.minTimeDifferencePercentage = 0.0;
dynamicRoutingOptions.pollInterval = Duration(minutes: 5);
try {
_dynamicRoutingEngine = DynamicRoutingEngine(dynamicRoutingOptions);
} on InstantiationException {
throw Exception("Initialization of DynamicRoutingEngine failed.");
}
}
By setting a minTimeDifference
of 0, you will get the event, even if the route stays the same.
When receiving a better route, the difference to the original route
is provided in meters and seconds:
void _startDynamicSearchForBetterRoutes(HERE.Route route) {
try {
_dynamicRoutingEngine.start(
route,
DynamicRoutingListener((Route newRoute, int etaDifferenceInSeconds, int distanceDifferenceInMeters) {
print('DynamicRoutingEngine: Calculated a new route.');
print('DynamicRoutingEngine: etaDifferenceInSeconds: $etaDifferenceInSeconds.');
print('DynamicRoutingEngine: distanceDifferenceInMeters: $distanceDifferenceInMeters.');
}, (RoutingError routingError) {
final error = routingError.toString();
print('Error while dynamically searching for a better route: $error');
}));
} on DynamicRoutingEngineStartException {
throw Exception("Start of DynamicRoutingEngine failed. Is the RouteHandle missing?");
}
}
Based on the provided etaDifferenceInSeconds
and distanceDifferenceInMeters
in comparison to the current route, an application can decide if the newRoute
should be used. If so, it can be set to the Navigator
or VisualNavigator
at any time.
Note
Although the DynamicRoutingEngine
can be used to update traffic information and ETA periodically, there is no guarantee that the new route is not different. In addition, the DynamicRoutingEngine
informs on distanceDifferenceInMeters
- but an unchanged route length does not necessarily mean that the route shape is the same. However, if only the ETA has changed and length is the same, then it is likely that only the ETA got updated due to an updated traffic situation: If it is crucial for you to stay on the original route, you need to compare the coordinates of the route shape - or consider to calculate a new route on your own with routingEngine.refreshRoute()
. Calling refreshRoute()
will not change the route shape. In opposition, keep in mind that the intended use of the DynamicRoutingEngine
is to find better routes and for this it is most often desired to follow a new route shape to bypass any traffic obstacles. Also, a better route can only be found when traffic obstacles are present (or gone) in the route ahead.
Make sure to update the last map-matched location of the driver and set it to the DynamicRoutingEngine
as soon as you get it - for example, as part of the RouteProgress
or NavigableLocation
update. This is important, so that a better route always starts close to the current location of the driver.
_dynamicRoutingEngine.updateCurrentLocation(_lastMapMatchedLocation!, routeProgress.sectionIndex);
The lastMapMatchedLocation
you can get from the NavigableLocationListener
and sectionIndex
from the RouteProgressListener
. It is recommended to call updateCurrentLocation()
when receiving events from the RouteProgressListener
.
An example implementation for this can be found in the corresponding navigation example app.
Update the Map View using Visual Navigator
You can either react on the location updates yourself or use the VisualNavigator
for this.
Typically, during navigation you want to:
- Follow the current location on the map.
- Show a location arrow indicating the current direction.
- Rotate the map towards the current direction.
- Add other visual assets, for example, maneuver arrows.
Each new location event results in a new NavigableLocation
that holds a map-matched location calculated based on the original GPS signal that we have fed into the VisualNavigator
. This map-matched location can then be consumed to update the map view.
One caveat, in most cases, getting location updates happens frequently, but nevertheless in discrete steps. This means that between each location may lie a few hundred meters. When updating the camera to the new location, this may cause a little jump.
On the other hand, when using the rendering capabilities of the VisualNavigator
, you can benefit from smoothly interpolated movements: Depending on the speed of the driver, the missing coordinates between two location updates are interpolated and the target map location is automatically updated for you.
In addition, the VisualNavigator
tilts the map, rotates the map towards the heading direction and shows a 3D location arrow and a LocationIndicator
. All of this can be activated with one line of code:
_visualNavigator.startRendering(_hereMapController);
Screenshot: Turn-by-turn navigation example running on a device.
In addition, you can stop following the current location with:
_visualNavigator.cameraBehavior = null;
And enable it again with:
_visualNavigator.cameraBehavior = FixedCameraBehavior();
By default, camera tracking is enabled. And thus, the map is always centered on the current location. This can be temporarily disabled to allow the user to pan away manually and to interact with the map during navigation or tracking. The 3D location arrow will then keep moving, but the map will not move. Once the camera tracking mode is enabled again, the map will jump to the current location and smoothly follow the location updates again.
To stop any ongoing navigation, call _visualNavigator.route = null
. Reset the above listeners to null or simply call stop()
on your location provider (depends on the actual implementation of your provider). More information can be found in the stop navigation section below.
For the full source code, please check the corresponding navigation example app.
Customize the Navigation Experience
The NavigationCustom example app shows how to switch to a custom LocationIndicator
and to a different type when navigation has stopped. It also shows how the navigation perspective can be customized. Find the example apps on GitHub.
- With the
CameraBehavior
you can customize how the map view will look like during guidance. It allows to set an auto-zoom behavior with the DynamicCameraBehavior
or a static tilt and zoom orientation with the FixedCameraBehavior
that can be updated programmatically. It allows also other options like changing the principal point. - With
ManeuverNotificationOptions
you can specify when TTS voice commands should be forwarded.
If you need more customization options for the map view, consider to use the Navigator
instead of the VisualNavigator
. With the headless Navigator
, you get the same features, but no default or customizable render options - instead, you can render the whole map view on your own - for example, if you want to have bigger route lines or any other visual customization, you can use the general rendering capabilities of the HERE SDK.
When using the Navigator
, in order to still render a smooth map experience, you have to take care to update the map view's current target location yourself: A location provider will send new location updates only in discrete steps, which will - even when delivered with a high frequency - lead to a "jumping" map view. Therefore, it is recommended to use the InterpolatedLocationListener
to get the same smoothened location updates as the VisualNavigator
.
Route Eat-Up
By default, the VisualNavigator
renders a Route
with different colors to visually separate the travelled part behind the current location from the part ahead of the user. This can disabled or customized. By default, the same colors are used as for the HERE WeGo mobile application.
If you want to disable the route eat-up visualization, call:
visualNavigator.isRouteProgressVisible = false;
Default VisualNavigatorColors
are available for day & night mode. For example, to switch colors depending on the daytime. The default colors can be customized like shown below:
void _customizeVisualNavigatorColors() {
Color routeAheadColor = Colors.blue;
Color routeBehindColor = Colors.red;
Color routeAheadOutlineColor = Colors.yellow;
Color routeBehindOutlineColor = Colors.grey;
Color maneuverArrowColor = Colors.green;
VisualNavigatorColors visualNavigatorColors = VisualNavigatorColors.dayColors();
RouteProgressColors routeProgressColors = new RouteProgressColors(
routeAheadColor,
routeBehindColor,
routeAheadOutlineColor,
routeBehindOutlineColor);
visualNavigatorColors.maneuverArrowColor = maneuverArrowColor;
visualNavigatorColors.setRouteProgressColors(SectionTransportMode.car, routeProgressColors);
_visualNavigator?.colors = visualNavigatorColors;
}
Note that this also allows to change the colors of maneuver arrows that are rendered along to path to indicate the next turns.
Receive Waypoint Events
The VisualNavigator
/ Navigator
classes provide more useful notifications. Below is an example of how to receive notifications on passed waypoints. Note that it is possible to be notified at the destination waypoint in two alternative ways:
- The first listener below notifies when the destination is reached - and therefore navigation can be stopped.
- Whereas the second listener shows how to get notified on all types of waypoints including the destination waypoint, but excluding any passThrough waypoints.
_visualNavigator.destinationReachedListener = DestinationReachedListener(() {
print('Destination reached. Stopping turn-by-turn navigation.');
stopNavigation();
});
_visualNavigator.milestoneStatusListener = MilestoneStatusListener((Milestone milestone, MilestoneStatus milestoneStatus) {
if (milestone.waypointIndex != null && milestoneStatus == MilestoneStatus.reached) {
print('A user-defined waypoint was reached, index of waypoint: ' + milestone.waypointIndex.toString());
print('Original coordinates: ' + milestone.originalCoordinates.toString());
} else if (milestone.waypointIndex != null && milestoneStatus == MilestoneStatus.missed) {
print('A user-defined waypoint was missed, index of waypoint: ' + milestone.waypointIndex.toString());
print('Original coordinates: ' + milestone.originalCoordinates.toString());
} else if (milestone.waypointIndex == null && milestoneStatus == MilestoneStatus.reached) {
print('A system-defined waypoint was reached at: ' + milestone.mapMatchedCoordinates.toString());
} else if (milestone.waypointIndex == null && milestoneStatus == MilestoneStatus.reached) {
print('A system-defined waypoint was missed at: ' + milestone.mapMatchedCoordinates.toString());
}
});
The onMilestoneStatusUpdated()
method provides a Milestone
instance that contains the information about the passed or missed waypoints along the route. Note that only stopover waypoints are included. Also, the destination waypoint is included and any other stopover waypoint that was added by a user. In addition, waypoints added by the HERE SDK are included, for example, when there is a need to take a ferry. However, the first waypoint - which is the starting point of your trip - is excluded. Waypoints of type passThrough are also excluded.
A Milestone
includes an index that refers to the waypoint list set by the user when calculating the route. If it is not available, then the Milestone
refers to a waypoint that was set during the route calculation - for example, when an additional stopover was included by the routing algorithm to indicate that a ferry must be taken.
The MilestoneStatus
enum indicates if the corresponding Milestone
has been reached or missed.
Receive Speed Limit Events
By implementing the SpeedLimitListener
you can receive events on the speed limits that are available along a road. These can be the speed limits as indicated on the local signs, as well as warnings on special speed situations, like for example, speed limits that are only valid for specific weather conditions.
Speed limits that are marked as conditional may be time-dependent. For example, speed limits for school zones can be valid only for a specific time of the day. In this case, the HERE SDK compares the device time with the time range of the speed limit. If the speed limit is currently valid, it will be propagated as event, otherwise not.
An implementation example can be found in the navigation_app example you can find on GitHub:
_visualNavigator.speedLimitListener = SpeedLimitListener((SpeedLimit speedLimit) {
double? currentSpeedLimit = _getCurrentSpeedLimit(speedLimit);
if (currentSpeedLimit == null) {
print("Warning: Speed limits unknown, data could not be retrieved.");
} else if (currentSpeedLimit == 0) {
print("No speed limits on this road! Drive as fast as you feel safe ...");
} else {
print("Current speed limit (m/s): $currentSpeedLimit");
}
});
double? _getCurrentSpeedLimit(SpeedLimit speedLimit) {
print("speedLimitInMetersPerSecond: " + speedLimit.speedLimitInMetersPerSecond.toString());
print("schoolZoneSpeedLimitInMetersPerSecond: " + speedLimit.schoolZoneSpeedLimitInMetersPerSecond.toString());
print("timeDependentSpeedLimitInMetersPerSecond: " + speedLimit.timeDependentSpeedLimitInMetersPerSecond.toString());
print("advisorySpeedLimitInMetersPerSecond: " + speedLimit.advisorySpeedLimitInMetersPerSecond.toString());
print("fogSpeedLimitInMetersPerSecond: " + speedLimit.fogSpeedLimitInMetersPerSecond.toString());
print("rainSpeedLimitInMetersPerSecond: " + speedLimit.rainSpeedLimitInMetersPerSecond.toString());
print("snowSpeedLimitInMetersPerSecond: " + speedLimit.snowSpeedLimitInMetersPerSecond.toString());
return speedLimit.effectiveSpeedLimitInMetersPerSecond();
}
Note that speed limits depend on the specified transport mode. Currently, the HERE SDK differentiates for cars and trucks based on the legal customer vehicle regulations per country (CVR). That means, the above SpeedLimit
event can indicate a lower speed limit for trucks: For example, on a highway, the speed limit will be at most 80 km/h in Germany - while for cars there may be a speed limit indicated that is 130 km/h or higher. Use map version 32 or higher to get CVR speed limits. On lower map versions trucks will receive the same speed limits as cars. Note that the map version can be updated with the MapUpdater
- even if there are no downloaded regions - as navigation will only request the map data of the same version that is currently stored into the map cache. Therefore, keep in mind that this applies to both, online and offline ussage.
Info
For trucks, we recommend to also specify the TruckSpecifications
inside the RouteOptions
. The properties grossWeightInKilograms
and weightInKilograms
can have an impact on the speed limit for trucks. These values are not only used for route calculation, but are also retrieved internally from the route to decide if the truck's weight is below or above 3.5 t. For most countries this has an impact on the legally allowed speed limit. If no weight is set, only the legally highest allowed speed limits for trucks will be forwarded - as the HERE SDK will then assume the truck's weight is very low.
Receive Speed Warning Events
Although you can detect when you exceed speed limits yourself when you receive a new speed limit event (see above), there is a more convenient solution that can help you implement a speed warning feature for your app.
Note
This does not warn when temporary speed limits such as weather-dependent speed limits are exceeded.
The onSpeedWarningStatusChanged()
method will notify as soon as the driver exceeds the current speed limit allowed. It will also notify as soon as the driver is driving slower again after exceeding the speed limit:
_visualNavigator.speedWarningListener = SpeedWarningListener((SpeedWarningStatus speedWarningStatus) {
if (speedWarningStatus == SpeedWarningStatus.speedLimitExceeded) {
SystemSound.play(SystemSoundType.click);
print('Speed limit exceeded.');
}
if (speedWarningStatus == SpeedWarningStatus.speedLimitRestored) {
print('Driver is again slower than current speed limit (plus an optional offset.)');
}
});
Note
Note that lambda_onSpeedWarningStatusChanged()
does not notify when there is no speed limit data available. This information is only available as part of a NavigableLocation
instance.
A SpeedWarningStatus
is only delivered once the current speed is exceeded or when it is restored again - for example, when a driver is constantly driving too fast, only one event is fired.
The lambda_onSpeedWarningStatusChanged()
notification is dependent on the current road's speed limits and the driver's speed. This means that you can get speed warning events also in tracking mode independent of a route. And, consequently, you can receive a speedLimitRestored
event when the route has changed - after driver's speed slows again.
Optionally, you can define an offset that is added to the speed limit value. You will be notified only when you exceed the speed limit, including the offset. Below, we define two offsets, one for lower and one for higher speed limits. The boundary is defined by highSpeedBoundaryInMetersPerSecond
:
void _setupSpeedWarnings() {
SpeedLimitOffset speedLimitOffset = SpeedLimitOffset();
speedLimitOffset.lowSpeedOffsetInMetersPerSecond = 2;
speedLimitOffset.highSpeedOffsetInMetersPerSecond = 4;
speedLimitOffset.highSpeedBoundaryInMetersPerSecond = 25;
_visualNavigator.speedWarningOptions = SpeedWarningOptions(speedLimitOffset);
}
Here we set the highSpeedBoundaryInMetersPerSecond
to 25 m/s: If a speed limit sign is showing a value above 25 m/s, the offset used is highSpeedOffsetInMetersPerSecond
. If it is below 25 m/s, the offset used is lowSpeedOffsetInMetersPerSecond
.
For the example values used above,
-
if the speed limit on the road is 27 m/s, the (high) speed offset used is 4 m/s. This means we will only receive a warning notification when we are driving above 31 m/s = 27 m/s + 4 m/s. The highSpeedOffsetInMetersPerSecond
is used, as the current speed limit is greater than highSpeedBoundaryInMetersPerSecond
.
-
if the speed limit on the road is 20 m/s, the (low) speed offset used is 2 m/s. This means we will only receive a warning notification when we are driving above 22 m/s = 20 m/s + 2 m/s. The lowSpeedOffsetInMetersPerSecond
is used, as the current speed limit is smaller than highSpeedBoundaryInMetersPerSecond
.
You can also set negative offset values. This may be useful if you want to make sure you never exceed the speed limit by having a buffer before you reach the limit. Note that you will never get notifications when you drive too slow, for example, slower than a defined offset - unless a previous speed warning has been restored.
Note
For tracking mode, call navigator.trackingTransportProfile(vehicleProfile)
and set a VehicleProfile
with e.g. truck
transport mode if you are a truck driver: By default, car
is assumed and you will only receive speed limits that are valid for cars - make sure to specify other vehicle properties like weight according to your vehicle. Truck drivers should also consider to specify the TruckSpecifications
inside RouteOptions
when calculating a route: When following a route during guidance, this can have an impact on the speed limits, too. Speed limits for trucks are determined according to the local customer vehicle regulations (CVR). For example, in Japan, trucks are only considered as trucks if their weight is over 8T or loading capacity is over 5T or boarding capacity is over 11 people. Otherwise, they are considered to be "light trucks" where the same speed limits may apply as for cars.
Receive Safety Cameras Events
You can attach a SafetyCameraWarningListener
to the Navigator
or VisualNavigator
to get notfied on SafetyCameraWarning
events that inform on cameras that detect the speed of a driver.
For most countries, this includes only permanently installed cameras. The HERE SDK does not inform whether the cameras are currently active - or not.
Getting notifications on safety cameras - also know as "speed cameras" - is not available for all countries, due to the local laws and regulations. Note that for some countries, like in France, precise location information for speed cameras is disallowed by law: Instead, here the notifications can only be given with less accuracy to meet the governmental guidelines. For most countries, however, precise location information is allowed.
As of now, the below listed countries are supported.
Coverage for Safety Cameras
- United States of America
- United Kingdom of Great Britain and Northern Ireland
- United Arab Emirates
- Turkey
- Thailand
- Taiwan
- Sweden
- Spain
- South Africa
- Slovenia
- Slovakia
- Singapore
- Serbia
- Saudi Arabia
- Russian Federation
- Romania
- Qatar
- Portugal
- Poland
- Oman
- Norway
- Netherlands
- Mexico
- Malaysia
- Macao
- Luxembourg
- Lithuania
- Latvia
- Kuwait
- Kazakhstan
- Italy
- Israel
- Isle of Man
- Iceland
- Hungary
- Hong Kong
- Greece
- France
- Finland
- Estonia
- Denmark
- Czechia
- Cyprus
- Croatia
- Chile
- Canada
- Bulgaria
- Brazil
- Bosnia and Herzegovina
- Belgium
- Belarus
- Bahrain
- Azerbaijan
- Austria
- Argentina
- Andorra
Get Road Attributes
By implementing the RoadAttributesListener
you can receive events on the road attributes. The events are fired whenever an attribute changes - while you are traveling on that road.
_visualNavigator.roadAttributesListener = RoadAttributesListener((RoadAttributes roadAttributes) {
print('Received road attributes update.');
if (roadAttributes.isBridge) {
print('Road attributes: This is a bridge.');
}
if (roadAttributes.isControlledAccess) {
print('Road attributes: This is a controlled access road.');
}
if (roadAttributes.isDirtRoad) {
print('Road attributes: This is a dirt road.');
}
if (roadAttributes.isDividedRoad) {
print('Road attributes: This is a divided road.');
}
if (roadAttributes.isNoThrough) {
print('Road attributes: This is a no through road.');
}
if (roadAttributes.isPrivate) {
print('Road attributes: This is a private road.');
}
if (roadAttributes.isRamp) {
print('Road attributes: This is a ramp.');
}
if (roadAttributes.isRightDrivingSide) {
print('Road attributes: isRightDrivingSide = ' + roadAttributes.isRightDrivingSide.toString());
}
if (roadAttributes.isRoundabout) {
print('Road attributes: This is a roundabout.');
}
if (roadAttributes.isTollway) {
print('Road attributes change: This is a road with toll costs.');
}
if (roadAttributes.isTunnel) {
print('Road attributes: This is a tunnel.');
}
});
An implementation example can be found in the Navigation example app you can find on GitHub.
The HERE SDK itself is not reacting on such events as roadAttributes.isTunnel
. An application may decide to switch to a night map scheme as long as isTunnel
is true. Internally, the HERE SDK is using a tunnel interpolation algorithm to provide this detection - as usually the GPS signal is very weak or even lost while being in a tunnel.
Get Lane Assistance
The HERE SDK provides lane recommendations to help a driver to stay on the route. When no Route
is set, no lane assistance is provided.
Two independent listeners can be set to obtain the following events before reaching a junction (including intersections and roundabouts):
-
ManeuverViewLaneAssistance
: Provides a list of Lane
recommendations if the next route maneuver takes place at a junction - regardless if the junction is considered complex or not. -
JunctionViewLaneAssistance
: Provides a list of Lane
recommendations only for complex junctions - regardless if a maneuver takes place at the junction or not. This event is not delivered for non-complex junctions.
A complex junction is defined as follows:
- The junction has at least a bifurcation.
- The junction has at least two lanes whose directions do not follow the current route.
Both events can be delivered for the same junction or for different ones. A Lane
instance contains information such as the available lanes on the current road, their direction category and whether the lane is recommended or not.
Both events are fired 300 meters ahead of a junction for non-highways and 1300 meters ahead of a junction on highways. However, for now the distance to the next complex junction is not exposed as part of the JunctionViewLaneAssistance
event. For ManeuverViewLaneAssistance
, the distance is available as part of the distance to the next maneuver which is available via the RouteProgress
event.
Each lane can lead to multiple directions stored in LaneDirectionCategory
:
-
straight
: A lane that goes straight up. -
slightlyLeft
: A lane that goes slightly left around 45 degrees. -
slightlyRight
: A lane that goes slightly right around 45 degrees. -
quiteLeft
: A lane that goes quite left around 90 degrees. -
quiteRight
: A lane that goes quite right around 90 degrees. -
hardLeft
: A lane that goes hard left around 135 degrees. -
hardRight
: A lane that goes hard right around 135 degrees. -
uTurnLeft
: A lane that makes a left u-turn around 180 degrees. -
uTurnRight
: A lane that makes a right u-turn around 180 degrees.
Note that all members can be true
or false
at the same time. Theoretically, all members can be true
when the lane leads to all multiple directions. Most lanes, however, lead to one or two directions, for example, quiteLeft
and quiteRight
will be true
when the lane splits up into two separate lanes.
To give visual feedback for the driver, it is recommended to create one transparent image asset for each of the nine possible directions. Each image can then be used as an overlay and several images can be blended into one lane pictogram that indicates the possible directions per lane on a road.
Most importantly, while the vehicle is traveling along the route, you can tell the driver which lane to take: This information is stored in the Lane.recommendationState
and it is recommended to highlight the pictogram of the recommended lane.
Illustration: Example of a possible visualization for a road with three lanes where the two leftmost roads lead to the next maneuver.
Note that the lane assistance information does not contain the lanes of the contraflow, instead it only describes the lanes of the current driving direction. The list of lanes is always ordered from the leftmost lane (index 0) to the rightmost lane (last index) of the road.
This way, lane assistance works the same for both, left-hand and righ-hand driving countries.
Note
Check roadAttributes.isRightDrivingSide
to know if you are in a left-hand driving country. Maneuver instructions and other notifications automatically adapt to the country. For lane assistance, the code will work the same, regardless of the country, as the list of lanes is always ordered from left - starting with index 0 - to right.
It is recommended to show ManeuverViewLaneAssistance
events immediately when the event is received. The event is synchronized with the ManeuverNotificationListener
to receive voice guidance events.
Lane information provided by JunctionViewLaneAssistance
events is recommended to be shown in a separate UI area indicating that there is an upcoming complex junction that needs attention.
Get Lane Recommendations For Maneuvers at a Junction with ManeuverViewLaneAssistance
The ManeuverViewLaneAssistance
event provides the recommended lanes at a junction where a maneuver takes place. On the map this maneuver is visualized by a maneuver arrow when the VisualNavigator
is rendering the MapView
. The location of the junction can be retrieved from the next Maneuver
that is available as part of the RouteProgress
event.
Each ManeuverViewLaneAssistance
event is synchronized with the corresponding maneuver voice notification as sent by the ManeuverNotificationListener
: This means that for most roads, the event arrives simultaneously and at the same frequency as the maneuver voice notification text that describes the next maneuver with the distance to the junction. As described below, this event can be used for a TTS engine to speak the maneuver message to the driver.
Similar to the other events described above, you can attach a ManeuverViewLaneAssistanceListener
to the Navigator
or VisualNavigator
. The resulting ManeuverViewLaneAssistance
object contains information about the available lanes on the current road and information such as their directions.
The following code snippet shows how to retrieve the information which lanes to take:
_visualNavigator.maneuverViewLaneAssistanceListener =
ManeuverViewLaneAssistanceListener((ManeuverViewLaneAssistance laneAssistance) {
List<Lane> lanes = laneAssistance.lanesForNextManeuver;
logLaneRecommendations(lanes);
List<Lane> nextLanes = laneAssistance.lanesForNextNextManeuver;
if (nextLanes.isNotEmpty) {
print("Attention, the next next maneuver is very close.");
print("Please take the following lane(s) after the next maneuver: ");
logLaneRecommendations(nextLanes);
}
});
...
void logLaneRecommendations(List<Lane> lanes) {
int laneNumber = 0;
for (Lane lane in lanes) {
if (lane.recommendationState == LaneRecommendationState.recommended) {
print("Lane $laneNumber leads to next maneuver, but not to the next next maneuver.");
}
if (lane.recommendationState == LaneRecommendationState.highlyRecommended) {
print("Lane $laneNumber leads to next maneuver and eventually to the next next maneuver.");
}
if (lane.recommendationState == LaneRecommendationState.notRecommended) {
print("Do not take lane $laneNumber to follow the route.");
}
laneNumber++;
}
}
The laneAssistance.lanesForNextNextManeuver
is normally an empty list, but there may be cases when two maneuvers are very close. In such cases, this list holds the information for the lanes to take immediately after the current maneuver is reached.
Until the next maneuver is reached, the information about the lanes to take is valid. It should be hidden once the next maneuver is reached or replaced by the information contained in any new ManeuverViewLaneAssistance
event:
if (_previousManeuverIndex != nextManeuverIndex) {
}
View the code for the RouteProgressListener
above and you can find how to get the nextManeuverIndex
, which will tell you when a new maneuver has to be taken.
Get Lane Recommendations For Complex Junctions with JunctionViewLaneAssistance
In addition to ManeuverViewLaneAssistance
(see above), the HERE SDK provides JunctionViewLaneAssistance
events that notify on the available lanes at complex junctions - even if there is no actual maneuver happening at that junction. These notifications work in parallel to ManeuverViewLaneAssistance
, but will only fire before reaching a complex junction (see above).
In comparison to ManeuverViewLaneAssistance
, the JunctionViewLaneAssistance
event can recommend more lanes to safely pass a complex junction - but not every of those lanes may lead to the next maneuver after passing the junction.
Unlike ManeuverViewLaneAssistance
, you can detect when the junction has been passed by checking the list if it is empty or not:
_visualNavigator.junctionViewLaneAssistanceListener =
JunctionViewLaneAssistanceListener((JunctionViewLaneAssistance junctionViewLaneAssistance) {
List<Lane> lanes = junctionViewLaneAssistance.lanesForNextJunction;
if (lanes.isEmpty) {
print("You have passed the complex junction.");
} else {
print("Attention, a complex junction is ahead.");
logLaneRecommendations(lanes);
}
});
When the complex junction has been passed, it is recommended to update the UI of your app to remove the lane information. JunctionViewLaneAssistance
events can be considered as an additional hint which lanes to take at complex junctions - especially, when no maneuver takes places at such junctions, because this information is not provided with the ManeuverViewLaneAssistance
event.
Keep in mind, that without a route to follow, you will not get any lane assistance related events.
Get Realistic Views for Signposts and Junction Views
With the RealisticViewWarningListener
you can receive SVG string data for signpost shields and complex junction views in 3D. The RealisticViewWarning
event contains SVG data for both, signposts and junction views. Note that the warning is only delivered for complex junctions (see above).
void _setupRealisticViewWarnings() {
RealisticViewWarningOptions realisticViewWarningOptions = RealisticViewWarningOptions();
realisticViewWarningOptions.aspectRatio = AspectRatio.aspectRatio3X4;
realisticViewWarningOptions.darkTheme = false;
_visualNavigator.realisticViewWarningOptions = realisticViewWarningOptions;
}
_visualNavigator.realisticViewWarningListener =
RealisticViewWarningListener((RealisticViewWarning realisticViewWarning) {
double distance = realisticViewWarning.distanceToRealisticViewInMeters;
DistanceType distanceType = realisticViewWarning.distanceType;
if (distanceType == DistanceType.ahead) {
print("A RealisticView ahead in: " + distance.toString() + " meters.");
} else if (distanceType == DistanceType.passed) {
print("A RealisticView just passed.");
}
RealisticView realisticView = realisticViewWarning.realisticView;
String signpostSvgImageContent = realisticView.signpostSvgImageContent;
String junctionViewSvgImageContent = realisticView.junctionViewSvgImageContent;
print("signpostSvgImage: " + signpostSvgImageContent);
print("junctionViewSvgImage: " + junctionViewSvgImageContent);
});
The realisticView.signpostSvgImageContent
is meant to be overlayed on top of the realisticView.junctionViewSvgImageContent
. Both images can be requested in the same aspect ratio. This way, both images will have the same dimensions and can be rendered at the same top-left position.
Screenshot: A junction view overlayed with a signpost image.
Note that the HERE SDK only delivers the SVG as string, so you need to use a 3rd party plugin to render the SVG string content, such as flutter_svg.
Note
The data for junction views is optimized to occupy only around 2 MB, while the signpost data occupies only a few KB. However, it is recommended to use the available feature-configurations to preload the image data in advance, see our Optimization Guide for more details.
While you can use the 16:9 resolution in landscape format, you can use it also in portrait mode to not cover the full screen: However, since the SVG assets are quite detailed it is recommended to shown them fullscreen on a secondary display.
Note
For positional warners that notify on a singular object along a road, such as a safety camera, a road sign or a realistic view, there is always only one active warning happening at a time: This means that after each ahead
event always a passed
event will follow to avoid cases where two AHEAD warnings for a single object are active at the same time.
Take a look at the Navigation example app on GitHub for a usage example.
Note
The RealisticView
feature is released as a beta release, so there could be a few bugs and unexpected behaviors. Related APIs may change for new releases without a deprecation process.
Truck Guidance
The HERE SDK supports premium truck routing and guidance with a variety of features. For example, during navigation you can attach a listener to get notified on truck restrictions ahead, such as narrow tunnels. Other examples of possible restrictions can be bridges that are not high enough to be passed by a bigger truck or roads where the weight of the truck is beyond the permissible weight of the road.
See the following code snippet:
_visualNavigator.truckRestrictionsWarningListener =
TruckRestrictionsWarningListener((List<TruckRestrictionWarning> list) {
for (TruckRestrictionWarning truckRestrictionWarning in list) {
if (truckRestrictionWarning.distanceType == DistanceType.ahead) {
print("TruckRestrictionWarning ahead in: ${truckRestrictionWarning.distanceInMeters} meters.");
} else if (truckRestrictionWarning.distanceType == DistanceType.reached) {
print("A restriction has been reached.");
} else if (truckRestrictionWarning.distanceType == DistanceType.passed) {
print("A restriction just passed.");
}
if (truckRestrictionWarning.weightRestriction != null) {
WeightRestrictionType type = truckRestrictionWarning.weightRestriction!.type;
int value = truckRestrictionWarning.weightRestriction!.valueInKilograms;
print("TruckRestriction for weight (kg): ${type.toString()}: $value");
} else if (truckRestrictionWarning.dimensionRestriction != null) {
DimensionRestrictionType type = truckRestrictionWarning.dimensionRestriction!.type;
int value = truckRestrictionWarning.dimensionRestriction!.valueInCentimeters;
print("TruckRestriction for dimension: ${type.toString()}: $value");
} else {
print("TruckRestriction: General restriction - no trucks allowed.");
}
}
});
The DistanceType.reached
notifies when a truck restriction has been reached. The event is followed by passed
, when the restriction has been passed. If the restriction has no length, then reached
is skipped and only a reached
event is sent. Note that the ahead
event is always sent first.
If all restrictions are nil, then a general truck restriction applies. The type of the restriction can be also seen from the TruckRestrictionWarningType
.
Note that some restrictions may be valid only for one direction of a road.
Note
When guidance is stopped by setting a null route or a new route, then any restriction that was announced with an ahead
notification, will instantly result in a passed
event to clear pending restriction warnings. While following a route - any restriction that lies not on the route is filtered out, but as soon as a driver deviates far enough (more than 15 meters) from a route, then supported restrictions ahead on the current road will lead again to restriction warnings.
The notification thresholds for truck restrictions differ slightly from other warners:
- In cities, the
ahead
event is sent 500 m ahead (instead of 1000 m ahead). - On rural roads, the event is sent 750 m ahead (instead of 1500 m ahead).
- On highways, the event is sent 1500 m ahead (instead of 2000 m ahead).
The TruckRestrictionWarning
event is based on the map data of the road network ahead. It delivers restrictions regardless of the currently set TransportMode
.
Note
When calculating a route, you can specify TruckOptions
including TruckSpecifications
. This may have an influence on the resulting Route
. However, it does not influence the TruckRestrictionWarning
event: Most restrictions found in the map data ahead are forwarded. Therefore, it may make sense for an application to filter out restriction warnings that are not relevant for the current vehicle. Note that this event is also delivering events in tracking mode when there is no route to follow.
More details on truck routing are given in the routing section. For example, there you can find how to calculate a route specifically for trucks. In general, if a route contains the Truck
transportation type, it is optimized for trucks.
In addition, you can specify several avoidance options, for example, to exclude certain city areas. All this can be specified before the route gets calculated and passed into the Navigator
or VisualNavigator
.
Worth to mention are also the following features:
- You can specify vehicle restrictions such as truck dimensions or if a truck is carrying hazardous goods via
TruckOptions
that can contain TruckSpecifications
and HazardousGood
lists. With this information you can shape the truck route. To get notified on upcoming truck restrictions, listen to the TruckRestrictionWarning
event as shown above. - You can listen for certain
RoadAttributes
as explained above. - When transport mode is set to
truck
, SpeedLimit
events will indicate the customer vehicle regulated (CVR) speed limits that may be lower than for cars. Consider to specify also the TruckSpecifications
inside the RouteOptions
when calculating the route. For tracking mode, call navigator.trackingTransportProfile(vehicleProfile)
and set a VehicleProfile
with truck
transport mode. By default, for tracking, car
is assumed: Make sure to specify other vehicle properties like weight according to your truck. - Worth to mention,
grossWeightInKilograms
and weightInKilograms
will effect CVR speed limits, as well as route restrictions and the estimated arrival time. Without setting proper TruckSpecifications
, routes and notfifcations may be inapprobiate. - You can exclude emission zones to not pollute the air in sensible inner city areas via
AvoidanceOptions
. With this you can also avoid certain RoadFeatures
like tunnels. Those can be set via TruckOptions
and are then excluded from route calculation. - You can enable a map layer scheme that shows safety camera icons on the map:
MapSceneLayers.safetyCameras
. Note: This layer is also suitable for cars. - You can enable a map layer scheme that is optimized to show truck-specific information on the map:
MapScene.Layers.vehicleRestrictions
. It offers several MapFeatureModes
, for example, to highlight active and inactive restrictions as purple lines on an affected road - a gray line or a gray icon means that the restriction is inactive. If a road is crossing such a purple line - and the road itself is not indicated as purple - then this restriction does not apply on the current road. Note that an icon does not necessarily indicate an exact location: For example, in case of a restricted road an icon may be placed centered on the restricted road - or, if the restriction is longer, the icon may be repeated several times for the same restriction along one or several roads. The icon itself is localized per country and represents the type of restriction. For most restrictions, the location and the type of the restriction is also indicated through the TruckRestrictionWarning
event (as shown above).
MapSceneLayers.vehicleRestrictions
Implement a Location Provider
A location provider is necessary to be provide Location
instances to the VisualNavigator
. It can feed location data from any source. Below we plan to use an implementation that allows to switch between native location data from the device and simulated location data for test drives.
As already mentioned above, the VisualNavigator
conforms to the LocationListener
interface, so it can be used as listener for classes that call onLocationUpdated()
.
As a source for location data, we use a HEREPositioningProvider
that is based on the code as shown in the Find your Location section.
Note
For navigation it is recommended to use LocationAccuracy.NAVIGATION
when starting the LocationEngine
as this guarantees the best results during turn-by-turn navigation.
To deliver events, we need to start the herePositioningProvider
:
_herePositioningProvider.startLocating(_visualNavigator, LocationAccuracy.navigation);
The required HERE SDK Location
type includes bearing and speed information along with the current geographic coordinates and other information that is consumed by the VisualNavigator
. The more accurate and complete the provided data is, the more precise the overall navigation experience will be.
Note that the bearing
value taken from the Location
object determines the direction of movement which is then indicated by the LocationIndicator
asset that rotates into that direction. When the user is not moving, then the last rotation is kept until a new bearing value is set. Depending on the source for the Location
data, this value can be more or less accurate.
Internally, the timestamp
of a Location
is used to evaluate, for example, if the user is driving through a tunnel or if the signal is simply lost.
You can find a reference implementation of a location provider on GitHub. The navigation_app example shows how HERE Positioning can be used for navigation.
Set up a Location Simulator
During development, it may be convenient to playback the expected progress on a route for testing purposes. The LocationSimulator
provides a continuous location signal that is taken from the original route coordinates.
Below we integrate the LocationSimulator
as an alternative provider to allow switching between real location updates and simulated ones.
import 'package:here_sdk/core.dart' as HERE;
import 'package:here_sdk/core.errors.dart';
import 'package:here_sdk/navigation.dart' as HERE;
import 'package:here_sdk/routing.dart' as HERE;
class HEREPositioningSimulator {
HERE.LocationSimulator? _locationSimulator;
void startLocating(HERE.Route route, HERE.LocationListener locationListener) {
_locationSimulator?.stop();
_locationSimulator = _createLocationSimulator(route, locationListener);
_locationSimulator!.start();
}
void stop() {
_locationSimulator?.stop();
}
HERE.LocationSimulator _createLocationSimulator(HERE.Route route, HERE.LocationListener locationListener) {
HERE.LocationSimulatorOptions locationSimulatorOptions = HERE.LocationSimulatorOptions();
locationSimulatorOptions.speedFactor = 2;
locationSimulatorOptions.notificationInterval = Duration(milliseconds: 500);
HERE.LocationSimulator locationSimulator;
try {
locationSimulator = HERE.LocationSimulator.withRoute(route, locationSimulatorOptions);
} on InstantiationException {
throw Exception("Initialization of LocationSimulator failed.");
}
locationSimulator.listener = locationListener;
return locationSimulator;
}
}
In addition, by setting LocationSimulatorOptions
, we can specify, how fast the current simulated location will move. By default, the notificationInterval
is 1 s and the speedFactor
is 1.0, which is equal to the average speed a user normally drives or walks along each route segment without taking into account any traffic-related constraints. The default speed may vary based on the road geometry, road condition and other statistical data, but it is never higher than the current speed limit. Values above 1.0 will increase the speed proportionally. If the route contains insufficient coordinates for the specified time interval, additional location events will be interpolated by the VisualNavigator
.
Note
The locations emitted by the LocationSimulator
are not interpolated and they are provided based on the source. In case of a Route
, the coordinates of the route geometry will be used (which are very close to each other). In case of a GPXTrack
, the coordinates are emitted based on the GPX data: For example, if there are hundrets of meters between two coordinates, then only those two coordinates are emitted based on the time settings. However, when fed into the VisualNavigator
, the rendered map animations will be interpolated by the VisualNavigator
.
The VisualNavigator
will skip animations if the distance between consecutive Location
updates is greater than 100 m. If the speedFactor
is increased, the distance between location updates changes as well - if the notification interval is not adjusted accordingly: For example, if you want to change the speed factor to 8, you should also change the notification interval to 125 ms (1000 ms / 8) in order to keep the distance between the Location
updates consistent. The notificationInterval
and the speedFactor
are inversely proportional. Accordingly, for a speedFactor
of 3, the recommended notificationInterval
is 330 ms.
Note that we need to ensure to stop any ongoing simulation (or real location source) before starting a new one.
You can see the code from above included in the navigation_app example on GitHub.
Voice Guidance
While driving, the user's attention should stay focused on the route. You can construct visual representations from the provided maneuver data (see above), but you can also get localized textual representations that are meant to be spoken during turn-by-turn guidance. Since these maneuver notifications are provided as a String
, it is possible to use them together with any TTS solution.
Note
Maneuver notifications are targeted at drivers. It is not recommended to use them for pedestrian guidance.
Example notifications:
Voice message: After 1 kilometer turn left onto North Blaney Avenue.
Voice message: Now turn left.
Voice message: After 1 kilometer turn right onto Forest Avenue.
Voice message: Now turn right.
Voice message: After 400 meters turn right onto Park Avenue.
Voice message: Now turn right.
To get these notifications, set up a ManeuverNotificationListener
:
_visualNavigator.maneuverNotificationListener = ManeuverNotificationListener((String voiceText) {
print('Voice guidance text: $voiceText');
});
Here we just print the text. You can use a TTS plugin, such as flutter_tts, to translate the voice text to an audible message a driver can hear.
Optionally, you can also enable natural guidance: ManeuverNotification
texts can be enhanced to include significant objects (such as traffic lights or stop signs) along a route to make maneuvers better understandable. Example: "At the next traffic light turn left onto Wall street". By default, this feature is disabled. To enable it, add at least one NaturalGuidanceType
such as trafficLight
to ManeuverNotificationOptions
via the list of includedNaturalGuidanceTypes
.
You can set a LanguageCode
to localize the notification text and a UnitSystem
to decide on metric or imperial length units. Make sure to call this before a route is set, otherwise the default settings is (enUs
, metric
). For more ManeuverNotificationOptions
consult the API Reference.
void _setupVoiceTextMessages() {
LanguageCode languageCode = LanguageCode.enGb;
List<LanguageCode> supportedVoiceSkins = VisualNavigator.getAvailableLanguagesForManeuverNotifications();
if (supportedVoiceSkins.contains(languageCode)) {
_visualNavigator.maneuverNotificationOptions = ManeuverNotificationOptions(languageCode, UnitSystem.metric);
} else {
print('Warning: Requested voice skin is not supported.');
}
}
Note that the HERE SDK supports 37 languages. You can query the languages from the VisualNavigator
with VisualNavigator.getAvailableLanguagesForManeuverNotifications()
. All languages within the HERE SDK are specified as LanguageCode
enum.
Note
Each of the supported languages to generate maneuver notifications is stored as a voice skin inside the HERE SDK framework. Unzip the framework and look for the folder voice_assets. You can manually remove assets you are not interested in to decrease the size of the HERE SDK package.
However, in order to feed the maneuver notification into a TTS engine, you also need to ensure that your preferred language is supported by the TTS engine. Usually each device comes with some preinstalled languages, but not all languages may be present initially.
Note
The SpatialAudioNavigation example app shows how to use the VisualNavigator
together with native code for iOS and Android to play back the TTS audio messages. You can find the example on GitHub. It also shows how to use audio panning to indicate directions via the stereo panaroma.
Supported Languages for Voice Guidance
Below you can find a list of all supported voice languages together with the name of the related voice skin that is stored inside the HERE SDK framework:
- Arabic (Saudi Arabia): voice_package_ar-SA
- Czech: voice_package_cs-CZ
- Danish: voice_package_da-DK
- German: voice_package_de-DE
- Greek: voice_package_el-GR
- English (British): voice_package_en-GB
- English (United States): voice_package_en-US
- Spanish (Spain): voice_package_es-ES
- Spanish (Mexico): voice_package_es-MX
- Farsi (Iran): voice_package_fa-IR
- Finnish: voice_package_fi-FI
- French (Canada): voice_package_fr-CA
- French: voice_package_fr-FR
- Hebrew: voice_package_he-IL
- Hindi: voice_package_hi-IN
- Croatian: voice_package_hr-HR
- Hungarian: voice_package_hu-HU
- Indonesian: (Bahasa) voice_package_id-ID
- Italian: voice_package_it-IT
- Japanese: voice_package_ja-JP
- Korean: voice_package_ko-KR
- Norwegian: (Bokmål) voice_package_nb-NO
- Dutch: voice_package_nl-NL
- Portuguese (Portugal) voice_package_pt-PT
- Portuguese (Brazil): voice_package_pt-BR
- Polish: voice_package_pt-PT
- Romanian: voice_package_ro-RO
- Russian: voice_package_ru-RU
- Slovak: voice_package_sk-SK
- Serbian: voice_package_sr-CS
- Swedish: voice_package_sv-SE
- Thai: voice_package_th-TH
- Turkish: voice_package_tr-TR
- Ukrainian: voice_package_uk-UA
- Vietnamese: voice_package_vi-VN
- Chinese (Simplified China): voice_package_zh-CN
- Chinese (Traditional Hong Kong): voice_package_zh-HK
- Chinese (Traditional Taiwan): voice_package_zh-TW
Open the HERE SDK framework and search for the voice_assets
folder. If you want to shrink the size of the framework, you can remove the voice packages you do not need.
Spatial Audio Maneuver Notifications
The same voiceText
as provided by the ManeuverNotificationListener
(see above) can be also enhanced with spatial audio information.
Spatial audio maneuver notifications allow to adjust the stereo panorama of the text-to-speech strings in real-time. This happens based on the maneuver location in relation to a driver sitting in a vehicle.
For this, use the SpatialManeuverNotificationListener
instead (or in parallel) of the ManeuverNotificationListener
. It triggers notifications when spatial maneuvers are available. In addition, add a SpatialManeuverAzimuthListener
to trigger the azimuth elements which compose one of the spatial audio trajectories defined by the HERE SDK. The resulting SpatialTrajectoryData
contains the next azimuth angle to be used and it indicates wether the spatial audio trajectory has finished or not.
Use SpatialManeuverAudioCuePanning
to start panning and pass CustomPanningData
to update the estimatedAudioCueDuration
of the SpatialManeuver
and to customize its initialAzimuthInDegrees
and sweepAzimuthInDegrees
properties.
Stop Navigation
While turn-by-turn navigation automatically starts when a route
is set and the LocationPrivider
is started, stopping navigation depends on the possible scenario:
Either, you want to stop navigation and switch to tracking mode (see below) to receive map-matched locations while still following a path - or you want to stop navigation without going back to tracking mode. For the first case, you only need to set the current route
to null
. This will only stop propagating all turn-by-turn navigation related events, but keep the ones alive to receive map-matched location updates and, for example, speed warning information. Note that propagation of turn-by-turn navigation events is automatically stopped when reaching the desired destination. Once you set a route
again, all turn-by-turn navigation related events will be propagated again.
If you want to stop navigation without going back to tracking mode - for example, to get only un-map-matched location updates directly from a location provider - it is good practice to stop getting all events from the VisualNavigator
. For this you should set all listeners individually to null
.
You can reuse your location provider implementation to consume location updates in your app. With HERE positioning you can set multiple LocationListener
instances.
When you use the VisualNavigator
, call stopRendering()
. Once called, the MapView
will be no longer under control by the VisualNavigator
:
- Settings, like map orientation, camera distance or tilt, which may have been altered during rendering are no longer updated. They will keep the last state before
stopRendering()
was called. For example, if the map was tilted during guidance, it will stay tilted. Thus, it is recommended to apply the desired camera settings after stopRendering()
is called. - The map will no longer move to the current location - even if you continue to feed new locations into the
VisualNavigator
. - The default or custom location indicator owned by the
VisualNavigator
will be hidden again. - Note that all location-based events such as the
RouteProgress
will be still delivered unless you unsubscribe by setting a null listener - see above.
Note
Since the VisualNavigator
operates on a MapView
instance, it is recommended to call stopRendering()
before destroying a MapView
. In addition, it is recommended to stop LocationSimulator
and DynamicRoutingEngine
in case they were started before. However, when a MapView
is paused, it is not necessary to also stop the VisualNavigator
. The VisualNavigator
stops automatically to render when the MapView
is paused and it starts rendering when the MapView
is resumed (when the VisualNavigator
was rendering before).
Tracking
While you can use the VisualNavigator
class to start and stop turn-by-turn navigation, it is also possible to switch to a tracking mode that does not require a route to follow. This mode is also often referred to as the driver's assistance mode. It is available for all transport modes - except for public transit. Public transit routes may lead to unsafe and unexpected results when being used for tracking. Although all other transport modes are supported, tracking is most suitable for car and truck transport modes.
To enable tracking, you only need to call:
_visualNavigator.route = null;
Of course, it is possible to initialize the VisualNavigator
without setting a route
instance - if you are only interested in tracking mode you don't need to set the route explicitly to null.
Note
Note that in tracking mode you only get events for listeners such as the NavigableLocationListener
or the SpeedWarningListener
that can fire without the need for a route to follow. Other listeners such as the RouteProgressListener
do not deliver events when a route is not set.
This enables you to keep your listeners alive and to switch between free tracking and turn-by-turn-navigation on the fly.
Consult the API Reference for an overview to see which listeners work in tracking mode.
Tracking can be useful, when drivers already know the directions to take, but would like to get additional information such as the current street name or any speed limits along the trip.
Prepare a Trip
The HERE SDK provides support for route prefetching of map data. This allows to improve the user experience - for example, during turn-by-turn navigation to handle temporary network losses gracefully.
Note that this is not needed if offline maps are already downloaded for the region where a trip takes place. In this case, all map data is already there, and no network connection is needed. Unlike, for example, the dedicated OfflineRoutingEngine
, the Navigator
or VisualNavigator
will decide automatically when it is necessary to fallback to cached data or offline map data. In general, navigation requires map data, even if it is executed headless without showing a map view. The reason for this is that map data needs to be accessed during navigation for map matching and, for example, to notify on certain road attributes like speed limits. This data is taken from the available data on the device - or in case it is not there, it needs to be downloaded during navigation. Therefore, it can be beneficial to prefetch more data in anticipation of the road ahead. Without prefetching, temporary connection losses can be handled less gracefully.
Note
Note that this is a beta release of this feature, so there could be a few bugs and unexpected behaviors. Related APIs may change for new releases without a deprecation process.
The RoutePrefetcher
constructor requires a SDKNativeEngine
instance as only parameter. You can get it via SDKNativeEngine.sharedInstance
after the HERE SDK has been initialized.
With the RoutePrefetcher
you can download map data in advance. The map data will be loaded into the map cache. Note that the map cache has its own size constraints and may already contain data: The RoutePrefetcher
may need to evict old cached data in order to store new map data.
-
It is recommended to call once routePrefetcher.prefetchAroundLocation(currentGeoCoordinates)
before starting a trip. This call prefetches map data around the provided location with a radius of 2 km into the map cache and it ensures, that there is enough map data available when a user starts to follow the route - assuming that the route starts from the current location of the user.
-
After navigation has started, consider to call once routePrefetcher.prefetchAroundRouteOnIntervals(navigator)
: It prefetches map data within a corridor along the route that is currently set to the provided Navigator
instance. If no route is set, no data will be prefetched. The route corridor defaults to a length of 10 km and a width of 5 km. Map data is prefetched only in discrete intervals. Prefetching starts 1 km before reaching the end of the current corridor. Prefetching happens based on the current map-matched location - as indicated by the RouteProgress
event. The first prefetching will start after travelling a distance of 9 km along the route. If a new route is set to the navigator
, it is not necessary to call this method again - however, it has also no negative impact when it is called twice or more times.
The navigation_app shows an example how to use the RoutePrefetcher
.
If the RoutePrefetcher
was successfully used at the start of a route - and then later the connectivity is lost, the cached data will be preserved even across future power cycles until the map cache is evicted. More about the map cache's eviction policy can be found here.
- For convenience, you can alternatively call both methods together before starting navigation. However, as a trade-off, there might not be enough time to prefetch all required data when the trip starts soon thereafter.
- Keep in mind that
prefetchAroundRouteOnIntervals()
increases network traffic continuously during guidance.
Of course, guidance will be also possible without any prefetched data, but the experience may be less optimized:
Both calls help to optimize temporary offline use cases that rely on cached map data. While the prefetchAroundLocation()
can be also used outside of a navigation use case, prefetchAroundRouteOnIntervals()
requires an ongoing navigation scenario.