
CI/CD	on	the	HERE	Open	Location	Platform
Technical	Solution	Paper

Version	1.0.0

Legal	Notices
©	2018	HERE	Global	B.V.	and	its	Affiliate(s).	All	rights	reserved.

This	material,	including	documentation	and	any	related	computer	programs,	is	protected	by
copyright	controlled	by	HERE.	All	rights	are	reserved.	Copying,	including	reproducing,	storing,
adapting	or	translating,	any	or	all	of	this	material	requires	the	prior	written	consent	of	HERE.	This
material	also	contains	confidential	information,	which	may	not	be	disclosed	to	others	without	the
prior	written	consent	of	HERE.

Trademark	Acknowledgements

HERE	is	trademark	or	registered	trademark	of	HERE	Global	B.V.	Other	product	and	company	names
mentioned	herein	may	be	trademarks	or	trade	names	of	their	respective	owners.

Disclaimer

This	content	is	provided	"as-is"	and	without	warranties	of	any	kind,	either	express	or	implied,
including,	but	not	limited	to,	the	implied	warranties	of	merchantability,	fitness	for	a	particular
purpose,	satisfactory	quality	and	non-infringement.	HERE	does	not	warrant	that	the	content	is
error	free	and	HERE	does	not	warrant	or	make	any	representations	regarding	the	quality,
correctness,	accuracy,	or	reliability	of	the	content.	You	should	therefore	verify	any	information
contained	in	the	content	before	acting	on	it.

To	the	furthest	extent	permitted	by	law,	under	no	circumstances,	including	without	limitation	the
negligence	of	HERE,	shall	HERE	be	liable	for	any	damages,	including,	without	limitation,	direct,
special,	indirect,	punitive,	consequential,	exemplary	and/	or	incidental	damages	that	result	from
the	use	or	application	of	this	content,	even	if	HERE	or	an	authorized	representative	has	been
advised	of	the	possibility	of	such	damages.

1

Document	Information

Product
Name: CI/CD	on	the	HERE	Open	Location	Platform
Version: Version	1.0.0
	
Document
Name: Technical	Solution	Paper
ID: a529c94-1537558990-2852eb98
Status: FINAL
Date: 2018-09-21T19:43:37.509Z
	

2

Table	of	Contents

CI/CD	and	OLP

CI/CD	Workflow

Workflow	Setup

Workflow	Steps

Example	Build	and	Test	Implementation

Example	Validation	Implementation

Example	Deployment	Implementation

Product	Acceptance	Test

Jenkins	Setup

CLIHelper	implementation

3

CI/CD	and	OLP

This	technical	solution	paper	provides	a	real	world	example	of	how	CI/CD	can	be	integrated	with
OLP.

You	can	integrate	OLP	(OLP)	with	a	Continuous	Integration	(CI)	system	to	detect	integration	errors
as	quickly	as	possible,	improve	quality,	and	reduce	software	lead	time.

You	can	also	integrate	OLP	with	a	Continuous	Delivery	(CD)	system	to	automatically	build,	test,	and
package	artifacts	for	production	release	based	on	code	changes.

Prerequisites

To	implement	these	CI/CD	instructions,	you	need	the	following:

Familiarity	with	CI/CD	concepts
An	Open	Location	Platform	account
Credentials	that	allow	you	to	create	groups	and	familiarity	with	account	management	in	OLP
Familiarity	with	the	SDK	and	basic	concepts	used	in	developing	pipelines
Familiarity	with	OLP	CLI

CI/CD	Pipeline	Overview

CI	and	CD	can	be	seen	as	a	pipeline	where	the	code	is	the	input.	This	input	gets	tested	across	a
series	of	steps	that	usually	include	automated	build	and	testing	as	well	as	validation	on	testing
environments	(often	known	as	Staging).	When	the	tests	complete	successfully,	the	code	is
published	as	ready	for	production.

The	image	below	illustrates	this	principle.

Figure:	General	CI/CD	Pipeline

CI/CD	and	OLP

4

https://platform.here.com

The	steps	described	above	are	suggestions	and	can	be	adapted	and	extended	based	on	different
needs.	For	instance,	some	steps	can	be	repeated	for	different	kinds	of	validation,	or	multiple	times
at	different	levels,	or	have	multiple	testing	environments	to	parallelize	long	running	tests.	All	these
different	testing	structures	always	need	to	test	the	same	code/artifact,	and	must	be	immutable
from	the	first	build	until	the	end	of	the	validation.	Building	a	CI/CD	implementation	is	in	itself	a
continuous	improvement	process	that	matures	step	by	step.

Basic	Definitions

Unit	tests	verify	the	smallest	testable	units	of	software:	they	are	self-contained.
Component	integration	tests	verify	integration	between	larger	components	of	the	software.	In
this	document,	we	assume	that	they	don't	access	remote	services.
System	integration	tests	verify	delivered	software	on	a	system	level,	including	integration	with
remote	services	like	the	Open	Location	Platform.
Product	acceptance	tests	use	prepared	test	data,	and	produce	and	verify	a	complete	output
from	a	tested	application.	They	are	executed	in	OLP	Pipelines.
Deployment	is	a	complete	set	of	data	and	actions	required	to	deploy	and	run	an	application	as
a	pipeline	in	the	platform.

CI/CD	and	OLP

5

CI/CD	workflow

The	diagram	below	illustrates	a	CI/CD	workflow	implemented	on	OLP.

Figure:	Example	CI/CD	Workflow

This	workflow	consists	of	the	following	high-level	stages:

local	development	and	testing
building	and	testing	in	a	CI	environment
deploying	to	the	HERE	platform	test	environment
deploying	to	the	HERE	platform	production	environment

The	last	three	stages	each	have	their	own	environment.	While	there	are	many	ways	companies	can
set	up	their	CI	system(s),	the	instructions	below	assume	that	all	stages	are	implemented	in	Jenkins
continuous	integration	system.

The	building	and	testing	phases	in	the	CI	environment	are	as	follows:

Pre	Submit	Validation,	which	runs	validation	checks	against	new	commits
Post	Submit	Verification,	which	occurs	when	the	commit	gets	merged	into	the	development
branch

CI/CD	Workflow

6

https://jenkins.io/

Pre	Submit	Validation	skips	publishing	artifacts	and	deploying	to	the	test	environment	since	it	only
verifies	that	the	changes	made	by	a	developer	don't	break	the	code	before	it	enters	the
development	branch.	In	this	workflow,	both	phases	are	handled	in	Gerrit	with	Plugin-based
Validation	in	conjunction	with	Jenkins.	Pre	Submit	Validation	is	an	extra	phase	and	is	not
mandatory	in	the	scope	of	these	instructions.

Validating	deployment	to	the	test	environment	and	the	production	environment	requires	a	series
of	steps.	In	this	example,	Jenkins	sets	up	and	tears	down	the	test	environment	and	deploys	the
artifact(s)	to	the	production	environment.	The	main	steps	in	the	CI/CD	workflow	are:

1.	 Build	and	Test	-	Jenkins	fetches	the	code	changes	pushed	to	a	version	control	system	by
developers,	builds	an	artifact	and	tests	it.	This	stage	is	automated	via	Jenkins	and	executed
directly	in	that	environment.	Jenkins	can	access	data	on	OLP,	but	no	resources	are	running	on
the	platform.	For	an	example	implementation,	see	the	Example	Build	and	Test	Implementation.

2.	 Validate	in	test	environment	-	Jenkins	deploys	artifacts	successfully	passing	the	first	step	to
the	test	environment.	Execution	is	on	OLP.	For	an	example	implementation,	see	the	Example
Validation	Implementation.

3.	 Deploy	to	production	environment	-	Jenkins	deploys	artifacts	successfully	passing	the	second
step	to	the	production	Environment.	Execution	is	on	OLP.	For	an	example	implementation,	see
the	Example	Deployment	Implementation.

In	the	above	steps,	the	successful	completion	of	a	step	triggers	the	next	step.	You	can	add	more
than	one	job	in	step	2	or	step	3	to	test	multiple	pipelines	in	parallel	or	to	deploy	multiple	pipelines
to	production.

The	sections	below	provide	additional	details	on	what	is	required	to	set	up	this	CI/CD	workflow.

CI/CD	Workflow

7

https://www.gerritcodereview.com/
https://gerrit-review.googlesource.com/Documentation/config-validation.html

Workflow	Setup

Before	you	can	go	through	the	detailed	steps	to	implement	a	Continuous	Integration
(CI)/Continuous	Delivery	(CD)	workflow,	you	need	to	provide	following	prerequisites.

Set	up	Access	for	the	Environments

As	shown	in	the	picture	on	the	previous	page,	the	suggested	workflow	requires	three	(3)
environments:

1.	 CI	environment	-	Jenkins	in	this	example
2.	 test	environment	-	OLP	resources,	defined	by	user	with	OLP	group
3.	 production	environment	-	OLP	resources,	defined	by	user	with	OLP	group

We	suggest	creating	a	group	for	each	environment	and	three	different	apps,	and	adding	one	app	to
each	group.	It	allows	to	clearly	distinguish	between	environments,	to	minimize	the	risk	of
disruption	caused	by	human	error	and	to	simulate	a	real	world	scenario	where	different	actors
operate	different	environments.

For	example,	you	can	have:

Group-X	with	App-X	for	the	CI	environment	(1)
Group-Y	with	App-Y	for	the	test	environment	(2)
Group-Z	with	App-Z	for	the	production	environment	(3)

Each	group/app	pair	creates	and	accesses	resources	in	its	environment.	To	clearly	separate
environments,	each	app	must	belong	to	only	one	group.

For	information	on	groups,	apps	and	adding	apps	to	groups,	see	the	Teams	and	Permissions	User
Guide.

Create	Catalog	and	Layers

Both	Step	2	and	Step	3	in	the	CI/CD	workflow	require	the	creation	of	the	following	catalogs	and
layers:

input	catalog	and	layer
output	catalog	and	layer

For	Step	2,	Validation	script	located	in		jenkins/step2.groovy		creates	the	catalogs	and	layers
required	in	the	test	environment	with	the	configuration	file		deployments/auto-sensor-1-
archive.json		for	the	test	input	catalog	and	the	configuration	file		deployments/auto-sensor-2-
learnings.json		for	the	test	output	catalog.	The	Jenkins	job	orchestrating	this	step	must	use	the
credentials	associated	with	App-Y	(Group-Y).

Workflow	Setup

8

https://developer.here.com/olp/documentation/access-control/user-guide/index.html

For	Step	3,	Deployment	script	located	in		jenkins/step3.groovy		assumes	the	catalogs	are
already	created	and	accessible.	The	Jenkins	job	orchestrating	this	step	must	use	the	credentials
associated	with	App-Z	(Group-Z).

For	information	on	how	to	create	layers,	see	the	Data	User	Guide.

Configure	Access	to	Catalogs

The	CI/CD	workflow	needs	access	to	the	catalogs	and	layers	used	in	your	code.

Additionally,	if	you	need	to	access	data	within	the	catalogs	from	your	local	development	or	Jenkins
environment,	you	must	share	the	required	catalogs	with	the	app	used	to	create	these	catalogs.	If
you	need	to	access	data	within	the	catalogs	from	inside	the	pipeline,	you	must	share	the	catalogs
with	the	group	used	to	create	the	pipeline	(Group-Y	for	test	catalogs,	Group-Z	for	production
catalogs).

For	information	about	sharing	catalogs,	see	the	Data	User	Guide.

Create	Pipelines

Both	Step	2	and	Step	3	require	a	pipeline	to	run	the	code	you	are	testing.	For	Step	2,
	jenkins/step2.groovy		creates	the	pipeline	required	for	the	test	environment	with	the
configuration	file		deployments/test/deployment.properties	.	The	Jenkins	job	orchestrating	this
step	must	use	the	credentials	related	to	Group-Y/App-Y.

For	Step	3,		jenkins/step3.groovy		creates	the	pipeline	required	for	the	production	environment
with	the	configuration	file		deployments/prd/deployment.properties		if	it	doesn't	exist.	The	The
id	of	created	pipeline	is	saved	in	the	Jenkins	job	configuration.	Jenkins	job	orchestrating	this	step
must	use	the	credentials	related	to	Group-Z/App-Z.

Workflow	Setup

9

https://developer.here.com/olp/documentation/data-user-guide/content/portal/layer-creating.html
https://developer.here.com/olp/documentation/data-user-guide/content/portal/catalog-sharing.html

Workflow	Steps

Build	Artifacts	and	Execute	Tests	Locally

To	build	artifacts	and	execute	tests	locally,	follow	the	steps	below.	Pre	Submit	and	Post	Submit
Verification	require	the	first	four	steps	below,	but	only	Post-Submit	verification	requires	Steps	5
and	6.

1.	 Initialize.	Cleans	the	workspace	to	start	from	a	clean	build.

2.	 Clone	your	source	code	Git	repository.	Retrieves	the	code	you	want	to	test	into	the	clean
workspace.

3.	 Build	the	package.	Compiles	the	source	code	and	creates	the	artifact.	All	the	following	testing
steps	use	this	artifact.	The	artifact	created	in	this	step	must	be	immutable	during	the	entire
process.

4.	 Run	local	tests.	Tests	the	artifact	as	defined	for	those	steps	that	do	not	require	OLP	resources.

5.	 If	the	package	passes	the	local	tests,	publish	the	JAR	to	your	Artifact	Repository.	Publishes	the
artifact	to	an	Artifact	Repository	Manager	together	with	the	tests.	This	example	uses
Artifactory	as	the	Artifact	Repository	Manager.	This	step	is	executed	only	in	Post	Submit
Verification.

6.	 If	the	package	passes	the	local	tests,	trigger	verification	in	test	environment.	Deploys	the
artifact	to	the	test	environment.	This	step	is	executed	only	in	Post	Submit	Verification.

	jenkins/step1.groovy		contains	a	reference	implementation	for	the	steps	above.	To	examine	the
code,	see	the	Build	and	Test	Implementation.

Run	Test	Job	in	OLP

To	run	the	test	job	in	OLP,	follow	the	steps	below.	This	step	uses	the	App-Y	(Group-Y)	credentials
pair.

All	artifacts	created	by	this	job	have	their	job	number	included	as	a	suffix	in	their	IDs	to	prevent
resources	created	by	different	jobs	from	conflicting	with	each	other.

1.	 Initialize.	Downloads	artifacts,	parses	deployment	file	and	downloads	OLP	CLI.

2.	 Prepare	test	catalogs.	Creates	the	input	and	output	catalogs	used	by	the	pipeline,	shares	them
with	Group-Y	and	generates	the	file		pipeline-config.conf		to	configure	the	pipeline	version.
The	Input	catalog	is	filled	with	test	partitions.

3.	 Create	pipeline.	Creates	a	pipeline,	pipeline	template	and	pipeline	version	necessary	to	run
test	in	OLP	Pipelines.

Workflow	Steps

10

4.	 Activate	pipeline.	Activates	a	pipeline	and	waits	for	the	pipeline	to	start	running.

5.	 Wait	for	pipeline	completion.	Waits	until	the	pipeline	job	completes.	Fails	the	test	if	the
pipeline	does	not	complete	successfully.

6.	 Run	product	acceptance	tests.	Downloads	output	partitions	from	the	output	catalog	and
executes	product	acceptance	tests.

7.	 Deploy	to	production	environment.	Triggers	the	production	deployment	job.

8.	 Clean	up.	Removes	test	artifacts.

	jenkins/step2.groovy		contains	a	reference	implementation	for	the	steps	above.	To	examine	the
code,	see	the	Validation	Implementation.

Deploy	to	Production

To	deploy	to	production	in	OLP,	follow	the	steps	below.

1.	 Initialize.	Downloads	artifacts,	parses	deployment	file	and	downloads	OLP	CLI.

2.	 Create	new	pipeline	version.	Creates	a	new	pipeline	version.

3.	 Activate/upgrade	pipeline.	Upgrades	the	pipeline	to	the	new	pipeline	version.

4.	 Clean	up.	Removes	created	artifacts	in	case	of	deployment	failure.

	jenkins/step3.groovy		contains	a	reference	implementation	for	the	steps	above.	To	examine	the
code,	see	the	Deployment	Implementation.

Deployment	Descriptions

When	a	job	deploys	a	pipeline	to	OLP,	the	deployment	is	associated	with	a	set	of	parameters,	with
most	properties	following	the	parameters	of	the	corresponding	CLI	commands	and	their
parameters.	The	example	below	is	for	a	single	deployment.

sdk_version=1.6.1.2

group_id=GROUP-9a15655d-ed31-4a0a-95ae-6f5a688aff4b

pipeline_name="CICD	Auto	Sensor	Learning	Processor	P2"

pipeline_description="Reads	from	Archive	layer	and	writes	learnings	to	output	catal

og"

pipeline_type=batch-1.5.0

#	Reflects	the	ids	used	for	catalogs	in	your	DPL	application	separated	by	spaces

pipeline_template_name="Auto	Sensor	Learning	Processor"

pipeline_template_description="Auto	Sensor	Learning	Processor"

input_catalog_ids=archive-catalog

Workflow	Steps

11

class_name=com.here.platform.examples.p2.Main

#	Method	is	either	use	or	create,	the	latter	means	the	catalog	will	be

#	created	and	deleted	at	each	run

input-catalogs.archive-catalog.method=use

input-catalogs.archive-catalog.hrn=hrn:here:data:::auto-sensor-1-archive

output_catalog.method=use

output_catalog.hrn=hrn:here:data:::auto-sensor-2-learnings

The	table	below	provides	the	descriptions	for	these	properties.

PROPERTY DESCRIPTION

sdk_version Version	of	the	SDK	used	to	download	OLP	CLI

group_id Group	ID	used	to	create	pipeline	templates	and	pipelines.
Your	Jenkins	App	ID	must	belong	to	this	group.

pipeline_name Name	of	the	pipeline	created

pipeline_description Description	of	the	pipeline	created

pipeline_type The	type	of	pipeline	-	batch-1.5.0	or	stream-1.5.0

pipeline_template_name Name	of	the	pipeline	template	created

pipeline_template_description Description	of	the	pipeline	template	created

input_catalog_ids IDs	of	input	catalogs	as	used	in	the	Data	Processing	Library

class_name Pipeline	template	entry	point

input_catalogs.*.method "use"	-	use	existing	catalog	or	"create"	-	create	a	catalog
inside	the	job

input_catalogs.*.hrn HRN	of	the	catalog	when	method	is	"use"

input_catalogs.*.id Hint	for	creating	the	catalog	HRN	when	method	is	"create"

input_catalogs.*.name Name	of	the	catalog	to	create

input_catalogs.*.config Name	of	the	file	with	catalog	configuration	located	in
deployments/	directory

output_catalogs.*.method "use"	-	use	existing	catalog	or	"create"	-	create	a	catalog
inside	the	job

output_catalogs.*.hrn HRN	of	the	catalog	when	method	is	"use"

output_catalogs.*.id Hint	for	creating	the	catalog	HRN	when	method	is	"create"

output_catalogs.*.name Name	of	the	catalog	to	create

output_catalogs.*.config Name	of	the	file	with	catalog	configuration	located	in
deployments/	directory

Workflow	Steps

12

Workflow	Steps

13

Build	and	Test	Implementation

#!groovy

/*---

	*

	*	Copyright	(C)	2018,	HERE	Global	B.V.

	*

	*	These	coded	instructions,	statements,	and	computer	programs	contain

	*	unpublished	proprietary	information	of	HERE	Global	B.V.,	and	are	copy

	*	protected	by	law.	They	may	not	be	disclosed	to	third	parties	or	copied

	*	or	duplicated	in	any	form,	in	whole	or	in	part,	without	the	specific,

	*	prior	written	permission	of	HERE	Global	B.V.

	*

	*---

	*/

/**

	*	Following	parameters	should	be	automatically	provided	by	Gerrit	plugin	for	Jenki

ns

	*	@param	[GERRIT_REFSPEC]	Gerrit	refspec	to	checkout

	*	@param	[GERRIT_BRANCH]	Gerrit	branch	to	checkout

	*	@param	[GERRIT_EVENT_TYPE]	Gerrit	event	type	change-merged	or	patchset-created

	*	@param	[GERRIT_PORT]	Gerrit	server	port

	*/

/**

	*

	*	Git	credentials	ID	from	here	https://${JENKINS_URL}/credentials/store/system/dom

ain/_/

	*	@env	[GIT_CREDS_FILE_ID]

	*

	*	ID:s	of	multiple	configuration	files	from	here	https://${JENKINS_URL}/configfile

s/index

	*

	*	@env	[SETTINGS_XML_FILE_ID]	(e.g.	${USER_HOME}/.m2/settings.xml)

	*

	*	Note:

	*	${JENKINS_URL}	should	be	replaced	with	your	own	Jenkins	URL

	*/

Example	Build	and	Test	Implementation

14

def	node_label	=	env.NODE_LABEL	?	env.NODE_LABEL	:	'master'

/**

	*	Maven	get	project	version	function.

	*/

String	getProjectVersion()	{

				return	sh(

												script:	"mvn	-q	"	+

																				"-Dexec.executable=echo	"	+

																				"-Dexec.args=\'\${projects.version}\'	"	+

																				"--non-recursive	"	+

																				"org.codehaus.mojo:exec-maven-plugin:1.6.0:exec",

												returnStdout:	true).trim()

}

/**

	*	Maven	get	project	groupId	function.

	*/

String	getProjectGroupId()	{

				return	sh(

												script:	"mvn	-q	"	+

																				"-Dexec.executable=echo	"	+

																				"-Dexec.args=\'\${projects.groupId}\'	"	+

																				"--non-recursive	"	+

																				"org.codehaus.mojo:exec-maven-plugin:1.6.0:exec",

												returnStdout:	true).trim()

}

/**

	*	Maven	get	project	artifactId	function.

	*/

String	getProjecArtifactId()	{

				return	sh(

												script:	"mvn	-q	"	+

																				"-Dexec.executable=echo	"	+

																				"-Dexec.args=\'\${projects.artifactId}\'	"	+

																				"--non-recursive	"	+

																				"org.codehaus.mojo:exec-maven-plugin:1.6.0:exec",

												returnStdout:	true).trim()

}

node(node_label)	{

				def	inPostSubmitVerification	=	env.GERRIT_EVENT_TYPE	==	'change-merged'	?	true	:

	false

				def	MAVEN_OPTS	=	"-B	-q	-s	\$MAVEN_SETTINGS"

Example	Build	and	Test	Implementation

15

				configFileProvider([configFile(fileId:	env.MAVEN_SETTINGS_FILE_ID,	variable:	'M

AVEN_SETTINGS')])	{

								stage('Initialize')	{

												//	Clean	workspace	before	build	starts

												cleanWs()

								}

								stage('Clone	the	Git	repository')	{

												//	Clone	repository	into	the	workspace

												checkout(

																				$class:	'GitSCM',

																				branches:	[[

																																							name:	env.GERRIT_BRANCH

]],

																				doGenerateSubmoduleConfigurations:	false,

																				extensions:	[],

																				submoduleCfg:	[],

																				userRemoteConfigs:	[

																												[

																																				credentialsId:	env.GIT_CREDS_FILE_ID,

																																				url										:	"ssh://${env.GERRIT_HOST}:${env.

GERRIT_PORT}/${env.GERRIT_PROJECT}",

																																				refspec						:	env.GERRIT_REFSPEC

]

]

)

								}

								stage('Build')	{

												sh("mvn	${MAVEN_OPTS}	compile	-Pplatform")

								}

								stage('Run	Local	Tests')	{

												sh("mvn	${MAVEN_OPTS}	verify	-Pplatform")

								}

								//	In	case	of	pre-submit	verification	skip	publication

								if	(inPostSubmitVerification)	{

												stage('Publish	JAR	to	artifact	repository')	{

																sh("mvn	${MAVEN_OPTS}	deploy	-DskipTests	-Pplatform	-Ptests")

												}

												stage('Deploy	to	testing	environment')	{

																build(

																								job:	'CI-CD-examples/step2',

Example	Build	and	Test	Implementation

16

																								parameters:	[

																																[

																																								$class:	'StringParameterValue',

																																								name		:	'PROJECT_VERSION',

																																								value	:	getProjectVersion()

],

																																[

																																								$class:	'StringParameterValue',

																																								name		:	'PROJECT_GROUP_ID',

																																								value	:	getProjectGroupId()

],

																																[

																																								$class:	'StringParameterValue',

																																								name		:	'PROJECT_ARTIFACT_ID',

																																								value	:	getProjecArtifactId()

]

],

																								wait:	false

)

												}

								}

				}

}

Example	Build	and	Test	Implementation

17

Validation	Implementation

#!groovy

/*---

	*

	*	Copyright	(C)	2018,	HERE	Global	B.V.

	*

	*	These	coded	instructions,	statements,	and	computer	programs	contain

	*	unpublished	proprietary	information	of	HERE	Global	B.V.,	and	are	copy

	*	protected	by	law.	They	may	not	be	disclosed	to	third	parties	or	copied

	*	or	duplicated	in	any	form,	in	whole	or	in	part,	without	the	specific,

	*	prior	written	permission	of	HERE	Global	B.V.

	*

	*---

	*/

import	com.here.platform.ci.*

/**

	*

	*	ID:s	of	multiple	configuration	files	from	here	https://${JENKINS_URL}/configfile

s/index

	*

	*	@env	[OLP_CREDENTIALS_FILE_ID]	(e.g.	${USER_HOME}/.here/credentials.properties)

	*	@env	[SETTINGS_XML_FILE_ID]	(e.g.	${USER_HOME}/.m2/settings.xml)

	*	@env	[NODE_LABEL]	(optional)	Jenkins	label	or	node	name.	By	default	'master'.

	*

	*	Note:

	*	${JENKINS_URL}	should	be	replaced	with	your	own	Jenkins	URL.

	*/

def	node_label	=	env.NODE_LABEL	?	env.NODE_LABEL	:	'master'

node(node_label)	{

				def	MAVEN_OPTS	=	"-B	-q	-s	\$MAVEN_SETTINGS"

				//	OLP	Delivery	Jenkins	DSL	Shared	Library

				CLIHelper	cli	=	new	CLIHelper(this)

				withCredentials([file(credentialsId:	env.OLP_CREDENTIALS_FILE_ID,	variable:	'OL

P_CREDENTIALS')])	{

Example	Validation	Implementation

18

								configFileProvider([configFile(fileId:	env.MAVEN_SETTINGS_FILE_ID,	variable:

	'MAVEN_SETTINGS')])	{

												try	{

																String	artifact	=	"${env.PROJECT_GROUP_ID}:${env.PROJECT_ARTIFACT_I

D}:${env.PROJECT_VERSION}:jar"

																String	deploymentId	=	"test"

																String	path_prefix	=	"${WORKSPACE}/target/dependency/deployments/"

																String	deployment_config_path	=	"${path_prefix}/${deploymentId}/dep

loyment.properties"

																def	deployment

																def	pipeline_id

																def	version_id

																def	pipeline_config_path

																def	pipeline_config

																stage('Initialize')	{

																				//	Clean	workspace	before	build	starts

																				cleanWs()

																				//	Get	'fat'	JAR	package	which	contains	all	the	dependencies

																				//	If	build	was	triggered	by	upstream	build	then	no	parameters	

are	needed

																				def	dependencyPlugin	=	"org.apache.maven.plugins:maven-dependen

cy-plugin:3.1.1"

																				//	This	is	necessary	to	access	a	deployment	description

																				sh("mvn	${MAVEN_OPTS}	${dependencyPlugin}:unpack	-Dartifact=${a

rtifact}:platform	-Dproject.basedir=${WORKSPACE}")

																				sh("mvn	${MAVEN_OPTS}	${dependencyPlugin}:copy	-Dartifact=${art

ifact}:platform	-Dproject.basedir=${WORKSPACE}")

																				sh("mvn	${MAVEN_OPTS}	${dependencyPlugin}:unpack	-Dartifact=${a

rtifact}:it-tests	-Dproject.basedir=${WORKSPACE}/test_data")

																				sh("mvn	${MAVEN_OPTS}	${dependencyPlugin}:copy	-Dartifact=${art

ifact}:it-tests	-Dproject.basedir=${WORKSPACE}")

																				//	Load	properties

																				deployment	=	readProperties(file:	deployment_config_path)

																				deployment.put("suffix",	"-${env.BUILD_NUMBER}")

																				//	Download	OLP	SDK	and	and	unpack	CLI	it	to	${WORKSPACE}/targe

t/dependency/

																				cli.getOlpCliFromSDK(deployment.sdk_version)

																}

																stage('Prepare	test	catalogs')	{

																				pipeline_config_path	=	"${path_prefix}/pipeline-config.conf"

Example	Validation	Implementation

19

																				pipeline_config	=	cli.preparePipelineConfig(pipeline_config_path

,	path_prefix,	deployment)

																				def	input_partition_id	=	"1475716_20180522155459_20180522153926

_20180522155455_10."	+

																												"_48.159957275016836_48.080087029569135_12.040017134498

243_11.896950104895032"

																				def	input_partition_file_path	=	"${WORKSPACE}/test_data/target/

dependency/${input_partition_id}"

																				def	partitionID	=	FileHelper.replaceDateInFileName(input_partit

ion_id)

																				def	layer	=	"sdii-data-archive"

																				def	partitions_str	=	"${partitionID}:${input_partition_file_pat

h}"

																				cli.run(

																												"olp	catalog	layer	partition	put	${pipeline_config["arc

hive-catalog"]}	${layer}	"

																																				+	"--partitions	"	+	partitions_str)

																}

																stage('Create	and	deploy	pipeline')	{

																				def	fat_jar_path	=	FileHelper.findFile(this,	"**/*-platform.jar"

)

																				def	result	=	cli.deployPipeline(deployment,	fat_jar_path,	pipel

ine_config_path)

																				pipeline_id	=	result.pipeline_id

																				version_id	=	result.version_id

																}

																stage("Activate	pipeline")	{

																				cli.json(

																												"olp	pipeline	version	activate	"

																																				+	"${pipeline_id}	${version_id}	${cli.optional("

",	deployment.pipeline_activate_options)}	")

																}

																stage("Wait	for	pipeline	completion")	{

																				def	timeoutSeconds	=	3000

																				cli.json(

																												"olp	pipeline	version	wait	--job-state	completed	"

																																				+	"${pipeline_id}	${version_id}	"

																																				+	"--timeout	${timeoutSeconds}	"

)

																}

Example	Validation	Implementation

20

																stage('Run	Product	Acceptance	Tests')	{

																				def	output_partition	=	"23611423"

																				cli.run(

																												"olp	catalog	layer	partition	get	"

																																				+	"${pipeline_config["output"]}	data-learnings	"

																																				+	"--partitions	${output_partition}	--output	${

env.WORKSPACE}	")

																				//	Run	tests

																				def	tests_jar_path	=	FileHelper.findFile(this,	"**/*-it-tests.j

ar")

																				sh("java	-jar	-Dpartition=${WORKSPACE}/${output_partition}	${te

sts_jar_path}")

																}

																stage('Deploy	to	production	environment')	{

																				build(

																												job:	'CI-CD-examples/step3',

																												parameters:	[

																																				[

																																												$class:	'StringParameterValue',

																																												name		:	'PROJECT_VERSION',

																																												value	:	env.PROJECT_VERSION

],

																																				[

																																												$class:	'StringParameterValue',

																																												name		:	'PROJECT_GROUP_ID',

																																												value	:	env.PROJECT_GROUP_ID

],

																																				[

																																												$class:	'StringParameterValue',

																																												name		:	'PROJECT_ARTIFACT_ID',

																																												value	:	env.PROJECT_ARTIFACT_ID

]

],

																												wait:	false

)

																}

												}	finally	{

																stage("Clean-up")	{

																				cli.cleanUp()

																}

												}

								}

Example	Validation	Implementation

21

				}

}

Example	Validation	Implementation

22

Deployment	Implementation

#!groovy

/*---

	*

	*	Copyright	(C)	2018,	HERE	Global	B.V.

	*

	*	These	coded	instructions,	statements,	and	computer	programs	contain

	*	unpublished	proprietary	information	of	HERE	Global	B.V.,	and	are	copy

	*	protected	by	law.	They	may	not	be	disclosed	to	third	parties	or	copied

	*	or	duplicated	in	any	form,	in	whole	or	in	part,	without	the	specific,

	*	prior	written	permission	of	HERE	Global	B.V.

	*

	*---

	*/

import	com.here.platform.ci.*

/**

	*	ID:s	of	multiple	configuration	files	from	here	https://${JENKINS_URL}/configfile

s/index

	*

	*	@env	[OLP_CREDENTIALS_FILE_ID]	(e.g.	${USER_HOME}/.here/credentials.properties)

	*	@env	[SETTINGS_XML_FILE_ID]	(e.g.	${USER_HOME}/.m2/settings.xml)

	*	@env	[PIPELINE_ID]	(optional)	Will	be	set	recursively	if	undefined.

	*	@env	[NODE_LABEL]	(optional)	Jenkins	label	or	node	name.	By	default	'master'.

	*

	*	Note:

	*	${JENKINS_URL}	should	be	replaced	with	your	own	Jenkins	URL

	*/

def	setJobParametersRecursively(pipeline_id)	{

				properties([

												parameters([

																				string(defaultValue:	pipeline_id,

																												description:	"This	is	the	ID	of	the	production	"	+

																																				"pipeline	to	which	a	successfully	tested	applic

ation	"	+

																																				"will	be	deployed",

																												name:	'PIPELINE_ID',

Example	Deployment	Implementation

23

																												trim:	true),

																				string(defaultValue:	env.OLP_CREDENTIALS_FILE_ID,

																												name:	'OLP_CREDENTIALS_FILE_ID',

																												trim:	true),

																				string(defaultValue:	env.SETTINGS_XML_FILE_ID,

																												name:	'SETTINGS_XML_FILE_ID',

																												trim:	true),

])

])

}

def	node_label	=	env.NODE_LABEL	?	env.NODE_LABEL	:	'master'

node(node_label)	{

				def	MAVEN_OPTS	=	"-B	-q	-s	\$MAVEN_SETTINGS"

				//	Initalize	objects	from	OLP	Delivery	Jenkins	DSL	Shared	Libraries

				CLIHelper	cli	=	new	CLIHelper(this)

				withCredentials([file(credentialsId:	env.OLP_CREDENTIALS_FILE_ID,	variable:	'OL

P_CREDENTIALS')])	{

								configFileProvider([configFile(fileId:	env.SETTINGS_XML_FILE_ID,	variable:	

'MAVEN_SETTINGS')])	{

												try	{

																GString	artifact	=	"${env.PROJECT_GROUP_ID}:${env.PROJECT_ARTIFACT_

ID}:${env.PROJECT_VERSION}:jar"

																String	deploymentId	=	"prd"

																GString	path_prefix	=	"${WORKSPACE}/target/dependency/deployments/"

																GString	deployment_config_path	=	"${path_prefix}/${deploymentId}/de

ployment.properties"

																def	deployment

																def	pipeline_id

																def	current_version_id

																def	version_id

																def	pipeline_config_path

																stage('Initialize')	{

																				//	Clean	workspace	before	build	starts

																				cleanWs()

																				//	Get	'fat'	JAR	package	which	contains	all	the	dependencies

																				//	If	build	was	triggered	by	upstream	build	then	no	parameters	

are	needed

																				def	dependencyPlugin	=	"org.apache.maven.plugins:maven-dependen

cy-plugin:3.1.1"

																				sh("mvn	${MAVEN_OPTS}	${dependencyPlugin}:unpack	-Dartifact=${a

Example	Deployment	Implementation

24

rtifact}	-Dproject.basedir=${WORKSPACE}")

																				sh("mvn	${MAVEN_OPTS}	${dependencyPlugin}:copy	-Dartifact=${art

ifact}:platform	-Dproject.basedir=${WORKSPACE}")

																				//	Load	properties

																				deployment	=	readProperties(file:	deployment_config_path)

																				//	Download	OLP	SDK	and	and	unpack	CLI	it	to	${WORKSPACE}/targe

t/dependency/

																				cli.getOlpCliFromSDK(deployment.sdk_version)

																}

																stage('Deploy	pipeline')	{

																				pipeline_config_path	=	"${path_prefix}/pipeline-config.conf"

																				pipeline_config	=	cli.preparePipelineConfig(pipeline_config_path

,	path_prefix,	deployment)

																				def	fat_jar_path	=	FileHelper.findFile(this,	"**/*-platform.jar"

)

																				if	(env.PIPELINE_ID)	{

																								deployment.put("pipeline_id",	env.PIPELINE_ID)

																				}

																				def	result	=	cli.deployPipeline(deployment,	fat_jar_path,	pipel

ine_config_path)

																				pipeline_id	=	result.pipeline_id

																				version_id	=	result.version_id

																				if	(!env.PIPELINE_ID)	{

																								//	Set	default	PIPELINE_ID	recursively	in	the	same	job	conf

iguration

																								setJobParametersRecursively(pipeline_id)

																				}

																}

																stage("Activate/upgrade	pipeline")	{

																				def	all_pipeline_versions	=

																												cli.json("olp	pipeline	version	list	${pipeline_id}").pi

pelineVersions

																				current_version_id	=	cli.getCurrentVersionId(all_pipeline_versi

ons)

																				if	(current_version_id	==	'')	{

																								cli.run(

																																"olp	pipeline	version	activate	"

Example	Deployment	Implementation

25

																																								+	"${pipeline_id}	${version_id}")

																				}	else	{

																								cli.run(

																																"olp	pipeline	version	upgrade	${pipeline_id}"

																																								+	"--from	${current_version_id}	--to	${vers

ion_id}")

																				}

																}

												}	catch	(error)	{

																stage("Clean-up")	{

																				cli.cleanUp()

																}

																throw	error

												}

								}

				}

}

Example	Deployment	Implementation

26

Product	Acceptance	Test

This	Product	Acceptance	Test	(PAT)	demonstrates	one	way	to	validate	learned	cluster	data	that	is
written	to	the	output	catalog.	For	the	code,	see	com.here.platform.examples.p2.PATTest.java.

Running	the	Test	Locally

The	following	prerequisites	apply	to	running	the	PAT	locally.

Prepare	your	data	catalogs	before	running	your	PATs.
Start	the	pipeline	you	are	testing	at	the	beginning	of	a	test	and	stop	the	pipeline	at	the	end	of
the	test.
Since	the	test	publishes	the	following	partition	to	your	input	catalog,	update	the	input
partition	name	to	ensure	it	contains	a	timestamp	within	the	configured	window	of	the	pipeline
processing	logic.

This	partition	contains	the	data	that	is	processed	by	the	pipeline	and	validated	as	part	of	the
testing	step.

	1475716_20180522155459_20180522153926_20180522155455_10._48.159957275016836_48

.080087029569135_12.040017134498243_11.896950104895032

After	the	pipeline	has	finished	processing	the	input	data,	download	the	partition	"23611423"
from	the	output	catalog.	The	Integration	test	executable	JAR	uses	this	partition	as	input.

To	run	the	tests	from	command	line,	enter	the	following	command.

java	-jar		-Dpartition=<output	partition	path>/23611423	<executable	jar	path>/p2-le

arning-processor-standalone-<VERSION>-it-tests.jar

Expected	test	execution	output.

JUnit	version	4.12

.

Time:	0.278

OK	(1	test)

Running	the	Test	from	Jenkins

The	"Prepare	test	catalogs"	stage	sets	up	the	environment	for	testing	with	the	following	steps:

creates	input	and	output	catalogs	for	the	test	following	the	recipe	from	the	file

Product	Acceptance	Test

27

	deployment.properties	

reads	a	cluster	data	archive	partition	tile	from	the	file	system
changes	the	date	to	the	current	date	in	the	file	name,	which	triggers	processing
loads	the	partition	into	the	input	catalog

				pipeline_config	=	helper.preparePipelineConfig(pipeline_config_path,	path_prefix

,	deployment)

				def	input_partition_id	=	"1475716_20180522155459_20180522153926_20180522155455_

10."	+

												"_48.159957275016836_48.080087029569135_12.040017134498243_11.896950104

895032"

				def	input_partition_file_path	=	"${WORKSPACE}/test_data/target/dependency/${inp

ut_partition_id}"

				//	Changing	the	date	to	the	current	date	in	the	file	name	(which	will	trigger	p

rocessing).

				def	now	=	new	Date()

				def	fileParts	=	input_partition_id.split("_")

				fileParts[1]	=	now.format("yyyyMMddHHmmss",	TimeZone.getTimeZone('UTC'))

				def	partitionID	=	fileParts.join("_")

				putPartitions(helper,	pipeline_config["archive-catalog"],	"sdii-data-archive",	[

partitionID:	input_partition_file_path])

The	"Run	Product	Acceptance	Tests"	stage	executes	the	following	steps:

retrieves	the	defined	partition	for	verification	by	PATTest.
executes	PATTest	to	verify	the	data.

				def	output_partitions	=	["23611423"]

				getPartitions(helper,	pipeline_config["output"],	"data-learnings",	output_parti

tions,	WORKSPACE)

				//	Run	tests

				output_partitions.each	{	partition	->

								sh("java	-jar	-Dpartition=${WORKSPACE}/${partition}	${WORKSPACE}/${env.PROJ

ECT_ARTIFACT_ID}-${env.PROJECT_VERSION}-it-tests.jar")

				}

Integration	Tests	Runner

Integration	tests	are	written	to	execute	JUnit	tests.	PATTestRunner	is	the	entry-point	for	executing
JUnit	tests	from	the	executable	jar.

Product	Acceptance	Test

28

import	org.junit.runner.JUnitCore;

public	class	PATTestRunner	{

				public	static	void	main(String[]	args)	{

								JUnitCore.main("com.here.platform.examples.p2.PATTest");

				}

}

Annotate	Your	Test	Classes

import	org.junit.experimental.categories.Category;

@Category(IntegrationTest.class)

public	class	PatTest{

				@Test

				public	void	outputDataValidationTest()	throws	Exception	{

				}

}

Configure	Your	Maven	Profile	to	Build	the	Executable	Jar

The	Maven	assembly	plugin	must	be	configured	to	build	an	executable	JAR	that	includes	all
required	dependencies.

<plugin>

				<groupId>org.apache.maven.plugins</groupId>

				<artifactId>maven-assembly-plugin</artifactId>

				<version>${maven-assembly-plugin.version}</version>

				<configuration>

								<descriptors>

												<descriptor>src/test/assembly/it-tests-jar.xml</descriptor>

								</descriptors>

				</configuration>

				<executions>

								<execution>

												<id>make-assembly</id>

												<phase>package</phase>

												<goals>

																<goal>single</goal>

												</goals>

												<configuration>

																<archive>

																				<manifest>

																								<mainClass>com.here.platform.examples.p2.PATTestRunner</mai

Product	Acceptance	Test

29

nClass>

																				</manifest>

																</archive>

												</configuration>

								</execution>

				</executions>

</plugin>

Configure	Assembly	Plugin	Descriptor	File

The	assembly	descriptor	file	includes/excludes	dependencies	and	files	needed	for	building	the
executable	JAR.

<assembly	xmlns="http://maven.apache.org/plugins/maven-assembly-plugin/assembly/1.1

.0"

										xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

										xsi:schemaLocation="http://maven.apache.org/plugins/maven-assembly-plugin

/assembly/1.1.0	http://maven.apache.org/xsd/assembly-1.1.0.xsd">

				<id>it-tests</id>

				<formats>

								<format>jar</format>

				</formats>

				<includeBaseDirectory>false</includeBaseDirectory>

				<dependencySets>

								<dependencySet>

												<outputDirectory></outputDirectory>

												<useProjectArtifact>false</useProjectArtifact>

												<!--	we're	creating	the	test-jar	as	an	attachment	-->

												<useProjectAttachments>true</useProjectAttachments>

												<useTransitiveFiltering>true</useTransitiveFiltering>

												<includes>

																<include>com.here.platform.examples:automotive-sensor-model</include

>

																<include>org.slf4j:slf4j-log4j12</include>

																<include>junit:junit</include>

																<include>com.fasterxml.jackson.datatype:jackson-datatype-jsr310</in

clude>

																<include>commons-io:commons-io</include>

												</includes>

												<unpack>true</unpack>

												<scope>test</scope>

								</dependencySet>

				</dependencySets>

				<fileSets>

								<fileSet>

Product	Acceptance	Test

30

												<directory>${project.build.directory}/test-classes</directory>

												<outputDirectory></outputDirectory>

												<includes>

																<include>**/PATTest*.class</include>

																<include>**/PATTestRunner.class</include>

																<include>**/IntegrationTest.class</include>

												</includes>

												<excludes>

																<exclude>**/clustering/**</exclude>

																<exclude>**/utils/**</exclude>

																<exclude>**/p2/Compiler*</exclude>

												</excludes>

												<useDefaultExcludes>true</useDefaultExcludes>

								</fileSet>

								<fileSet>

												<directory>${project.basedir}/src/main/resources</directory>

												<outputDirectory></outputDirectory>

												<includes>

																<include>log4j.properties</include>

												</includes>

												<useDefaultExcludes>true</useDefaultExcludes>

								</fileSet>

								<fileSet>

												<directory>${project.basedir}/src/test/resources/inputCatalogFiles</dir

ectory>

												<outputDirectory></outputDirectory>

												<includes>

																<include>1475716_20180522155459_20180522153926_20180522155455_10._4

8.159957275016836_48.080087029569135_12.040017134498243_11.896950104895032	</include

>

												</includes>

												<useDefaultExcludes>true</useDefaultExcludes>

								</fileSet>

				</fileSets>

</assembly>

Product	Acceptance	Test

31

Jenkins	Setup

The	following	information	is	for	a	standard	Jenkins	setup	for	running	Continuous	Integration
(CI)/Continuous	Delivery	(CD)	for	OLP.

Tools

The	following	tools	are	used	in	the	CI/CD	implementation.	The	source	code	for	the	example
application	and	configuration	in	the	Maven	POM	files	can	be	viewed	in	the	platform-examples-
<release>.zip	in	the	HERE	Artifactory,	https://repo.platform.here.com/artifactory.

Maven
JUnit
Jenkins
Git
Gerrit

Maven	Plugins

The	following	Maven	plugins	are	used	for	the	CI	server	build.

MAVEN
PLUGIN DESCRIPTION

sonar-
maven-
plugin

SonarQube™	is	an	open	source	platform	for	Continuous	Inspection	of	code
quality.	The	Maven	Plugin	triggers	the	code	analyzers.

jacoco-
maven-
plugin

The	JaCoCo	Maven	plug-in	provides	the	JaCoCo	runtime	agent	for	your	tests
and	allows	basic	report	creation.

maven-
surefire-
plugin

The	Surefire	Plugin	is	used	during	the		test		phase	of	the	build	lifecycle	to
execute	the	unit	tests	of	an	application.

maven-
failsafe-
plugin

The	Failsafe	Plugin	is	designed	to	run	integration	tests	while	the	Surefire
Plugin	is	designed	to	run	unit	tests.

Jenkins	Plugins

The	following	Maven	plugins	are	used	for	the	CD	server.

Note

Jenkins	Setup

32

https://repo.platform.here.com/artifactory
http://maven.apache.org/

The	Pipeline	plugin	installs	several	dependent	plugins.

JENKINS	PLUGIN REFERENCE	URL

Pipeline	Plugin https://wiki.jenkins.io/display/JENKINS/Pipeline+Plugin

Managed	Script	Plugin https://wiki.jenkins.io/display/JENKINS/Managed+Script+Plugin

Git	Plugin https://wiki.jenkins.io/display/JENKINS/Git+Plugin

Job	DSL	Plugin https://wiki.jenkins.io/display/JENKINS/Job+DSL+Plugin

Build	Failure	Analyzer https://wiki.jenkins.io/display/JENKINS/Build+Failure+Analyzer

Gerrit	Trigger https://wiki.jenkins.io/display/JENKINS/Gerrit+Trigger

Config	File	Provider
Plugin https://wiki.jenkins.io/display/JENKINS/Config+File+Provider+Plugin

Credentials	Plugin https://wiki.jenkins.io/display/JENKINS/Credentials+Plugin

Timestamper https://wiki.jenkins.io/display/JENKINS/Timestamper

Build-timeout	Plugin https://wiki.jenkins.io/display/JENKINS/Build-timeout+Plugin

Adding	HERE	Artifactory	Access	Credentials	in	Jenkins

When	you	initially	set	up	your	Open	Location	Platform	credentials,	you	download	and	copy	a
Maven		settings.xml		file	to	your	$HOME/.m2	directory.

The	example	below	illustrates	a	sample	settings	file.

<settings	xmlns="http://maven.apache.org/SETTINGS/1.1.0"

										xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

										xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.1.0	http://maven.a

pache.org/xsd/settings-1.1.0.xsd">

<servers>

		<server>

				<id>HERE_PLATFORM_REPO</id>

				<username>HERE-a1a2a3a4a5a6a-7777-89aa-1a82-68880b58371c</username>

				<password>XXX</password>

		</server>

</servers>

<profiles>

		<profile>

				<id>default</id>

				<repositories>

						<repository>

								<releases>

								<enabled>true</enabled>

Jenkins	Setup

33

https://wiki.jenkins.io/display/JENKINS/Pipeline+Plugin
https://wiki.jenkins.io/display/JENKINS/Managed+Script+Plugin
https://wiki.jenkins.io/display/JENKINS/Git+Plugin
https://wiki.jenkins.io/display/JENKINS/Job+DSL+Plugin
https://wiki.jenkins.io/display/JENKINS/Build+Failure+Analyzer
https://wiki.jenkins.io/display/JENKINS/Gerrit+Trigger
https://wiki.jenkins.io/display/JENKINS/Config+File+Provider+Plugin
https://wiki.jenkins.io/display/JENKINS/Credentials+Plugin
https://wiki.jenkins.io/display/JENKINS/Timestamper
https://wiki.jenkins.io/display/JENKINS/Build-timeout+Plugin

						</releases>

						<snapshots>

								<enabled>false</enabled>

						</snapshots>

						<id>HERE_PLATFORM_REPO</id>

						<name>HERE	Platform	Repository</name>

						<url>https://repo.platform.here.com/artifactory/open-location-platform/</url>

				</repository>

		</repositories>

		<pluginRepositories>

				<pluginRepository>

						<releases>

								<enabled>true</enabled>

						</releases>

						<snapshots>

								<enabled>false</enabled>

						</snapshots>

						<id>HERE_PLATFORM_REPO</id>

						<name>HERE	Platform	Repository</name>

						<url>https://repo.platform.here.com/artifactory/open-location-platform/</url>

						</pluginRepository>

				</pluginRepositories>

		</profile>

</profiles>

<activeProfiles>

		<activeProfile>default</activeProfile>

</activeProfiles>

</settings>

Add	Maven	User	Credentials

To	add	your	user	credentials	to	Maven,	follow	the	steps	below.

1.	 From	the	main	Jenkins	dashboard,	select	Manage	Jenkins.
2.	 Select	Credentials	from	the	left-hand	side	menu	to	display	the	System	sub-menu.
3.	 Select	the	System	sub-menu.
4.	 Select	Global	credentials	>	Add	Credentials.

Jenkins	Setup

34

Figure:	Add	Credentials

Import	the	Maven	settings.xml	file

To	import	your	Maven	settings	file,	follow	the	steps	below.

1.	 From	the	main	Jenkins	dashboard,	select	Manage	Jenkins.
2.	 Select	the	Managed	files	plugin.	This	opens	the	Config	File	Management	dashboard.
3.	 Select	Add	a	new	Config.
4.	 Select	Maven	settings.xml	and	click	Submit.
5.	 Select	Server	Credentials	Add.
6.	 Enter		HERE_PLATFORM_REPO		for	ServerId.	This	matches	the		<server><id>		section	from	your

	settings.xml		file.
7.	 Enter	the	username	and	password	pair	from	the	downloaded		settings.xml		file	in	the

Credentials	field.
8.	 Remove	the	username	and	password	pair	from	the	downloaded		settings.xml		file	and	copy

the	resulting	file	into	the	Content	field.

Jenkins	Setup

35

Figure:	Import	Maven	Settings

Add	OLP	CLI	Access	Credentials	in	Jenkins

The	sharing	groups	created	for	each	environment	must	be	added	to	Jenkins	in	order	to	gain
permission	to	run	OLP	CLI	commands.

Perform	the	following	steps	for	each	sharing	group.

1.	 From	the	main	Jenkins	dashboard,	select	Manage	Jenkins.
2.	 Select	Credentials	from	the	left-hand	side	menu.	A	System	sub-menu	opens	under

Credentials.
3.	 Select	the	System	sub-menu.
4.	 Select	Global	credentials	>	Add	Credentials.
5.	 Set	the	input	parameters	as	indicated	in	the	table	below.

LABEL VALUE

Kind Secret	file

Scope Global

File ~/.here/credentials.properties

ID

Jenkins	Setup

36

Add	Proxy	Access	Credentials	in	Jenkins	(optional)

To	add	proxy	access	credentials,	follow	the	steps	below.

1.	 From	the	main	Jenkins	dashboard,	select	Manage	Jenkins.
2.	 Select	Credentials	from	the	left-hand	side	menu.	A	System	sub-menu	opens	under

Credentials.
3.	 Select	the	System	sub-menu.
4.	 Select	Global	credentials	>	Add	Credentials.
5.	 Set	the	input	parameters	as	indicated	in	the	table	below.

LABEL VALUE

Kind Username	with	password

Scope Global

Username <proxy	username>

Password <proxy	password>

ID proxy

Bind	Proxy	Credentials

To	bind	the	proxy	credentials,	define	the	following	pipeline	DSL,	which	accesses	the	'proxy'
credentials	created	above	and	assigns	"Username"	to	"USERNAME"	and	"Password"	to
"PASSWORD".

withCredentials([usernamePassword(credentialsId:	'proxy',	passwordVariable:	'PROXY_

PASSWORD',	usernameVariable:	'PROXY_USER')])	{

				withEnv(“HTTPS_PROXY=$PROXY_USER:$PROXY_PASSWORD@<proxy	address>"){

								...

				}

}

Add	Jenkins	DSL	Shared	Libraries

DSL	Shared	Libraries	should	be	defined	in	a	separate	source	control	repository	and	configured	in
your	Jenkins	settings.	The	OLP	CLI	Helper	Groovy	class	is	part	of	OLP	Shared	Libraries.

Directory	Structure

(root)

+-	src																					#	Groovy	source	files

|			+-	org

|							+-	foo

|											+-	Bar.groovy		#	for	org.foo.Bar	class

Jenkins	Setup

37

+-	vars

|			+-	foo.groovy										#	for	global	'foo'	variable

|			+-	foo.txt													#	help	for	'foo'	variable

+-	resources															#	resource	files	(external	libraries	only)

|			+-	org

|							+-	foo

|											+-	bar.json				#	static	helper	data	for	org.foo.Bar

Configure	Jenkins	to	Define	Global	Shared	Libraries

1.	 From	the	main	Jenkins	dashboard,	select	Manage	Jenkins.
2.	 Select	Configure	System.
3.	 Select	Global	Pipeline	Libraries	>	Add.

Set	up	Jenkins	to	Run	the	Job	Based	on	Jenkinsfile

1.	 Create	a	new	Jenkins	job.

Figure:	New	item

2.	 Enter	an	arbitrary	unique	job	name	and	select	Pipeline.	

3.	 Inside	the	job	configuration	Pipeline	area,	select	Pipeline	script	from	SCM.
4.	 In	SCM,	configure	your	repository	type,	repository	URL,	credentials,	and	other	values.
5.	 In	the	Script	Path	field,	enter	the	relative	location	to	your	Jenkinsfile	in	your	project	repo.	

Jenkins	Setup

38

6.	 If	you	want	to	trigger	the	build	on	Gerrit	events,	you	need	to	set	up	Build	Triggers	»	Gerrit
events.

For	additional	information,	refer	to	the	following	links.

1.	 https://platform.here.com/
2.	 https://www.martinfowler.com/articles/continuousIntegration.html
3.	 https://www.thoughtworks.com/continuous-delivery
4.	 https://jenkins.io/doc/book/pipeline/shared-libraries/

Jenkins	Setup

39

https://platform.here.com/
https://www.martinfowler.com/articles/continuousIntegration.html
https://www.thoughtworks.com/continuous-delivery
https://jenkins.io/doc/book/pipeline/shared-libraries/

Implementation	of	CLIHelper

#!groovy

/*---

	*

	*	Copyright	(C)	2018,	HERE	Global	B.V.

	*

	*	These	coded	instructions,	statements,	and	computer	programs	contain

	*	unpublished	proprietary	information	of	HERE	Global	B.V.,	and	are	copy

	*	protected	by	law.	They	may	not	be	disclosed	to	third	parties	or	copied

	*	or	duplicated	in	any	form,	in	whole	or	in	part,	without	the	specific,

	*	prior	written	permission	of	HERE	Global	B.V.

	*

	*---

	*/

package	com.here.platform.ci

//	More	information:	https://github.com/jenkinsci/workflow-cps-plugin/blob/master/R

EADME.md#technical-design

import	com.cloudbees.groovy.cps.NonCPS

/**

	*	Helpers	class	which	implements	an	abstraction	on	top	of	OLP	CLI	for	Jenkins

	*/

class	CLIHelper	implements	Serializable	{

				private	context

				private	cleanup_list

				private	envs

				private	sdk_version

				private	olp_cli_path

				/**

					*	Constructor.

					*/

				public	CLIHelper(context)	{

								this.context	=	context

								this.envs	=	context.env

								this.cleanup_list	=	[]

				}

CLIHelper	implementation

40

				public	String	quote(String	quoted)	{

								if	(quoted.contains("	"))	{

												return	"\"${quoted}\""

								}	else	{

												return	quoted

								}

				}

				public	String	optional(String	param,	String	str)	{

								if	(str	==	null)	{

												return	""

								}	else	{

												if	(param.isEmpty())	{

																return	str

												}	else	{

																return	"${param}	${str}"

												}

								}

				}

				/**

					*	Creates	a	catalog

					*	@param	id	a	suggestion	for	Data	Service	to	use	when	generating	HRN

					*	@param	name	catalog	name

					*	@param	summary	catalog	summary

					*	@param	args	additional	parameters	passed	to	the	CLI

					*	@param	cleanup	controls	whether	the	catalog	should	be	added	to	cleanup	list

					*	@return	catalog	hrn

					*/

				public	String	createCatalog(String	id,	String	name,	String	summary,

																																String	args	=	"")	{

								String	hrn	=	json(

																"olp	catalog	create	${id}	${name}	"

																								+	"--summary	${quote(summary)}	${args}	"

).hrn

								cleanup_list.add("olp	catalog	delete	${hrn}")

								return	hrn

				}

				/**

					*	Returns	the	most	recent	pipeline	job	or	empty	map	if	none	was	found

					*	@param	pipeline_id

					*	@param	version_id

					*	@return

					*/

CLIHelper	implementation

41

				public	Map	getLastPipelineVersionJob(String	pipeline_id,	String	version_id)	{

								context.echo("Showing	pipeline	jobs")

								def	json_obj	=	json(

																"olp	pipeline	version	job	list	${pipeline_id}	${version_id}")

																.pipelineVersionJobs

								if	(json_obj.size()	>	0)	{

												context.echo("Pipeline	job	found	${json_obj[0]}")

												return	json_obj[0]

								}	else	{

												context.echo("No	pipeline	jobs	found	were	found")

												def	result	=	[:]

												return	result

								}

				}

				@NonCPS

				public	String	getCurrentVersionId(pipeline_versions)	{

								context.echo("Getting	current	version	Id")

								for	(int	i	=	0;	i	<	pipeline_versions.size();	i++)	{

												if	(pipeline_versions[i]	==	"running"	||	pipeline_versions[i]	==	"sched

uled")	{

																context.echo("Found	Current	Version	Id	${pipeline_versions[i].id}")

																return	pipeline_versions[i].id

												}

								}

								context.echo("Current	Version	ID	not	found")

								return	""

				}

				/**

					*	Prepares	a	catalog	for	using	in	pipeline

					*	@param	deployment

					*	@param	catalog_configurations_path

					*	@param	prefix

					*	@return

					*/

				public	String	prepareCatalog(

												String	catalog_configurations_path,

												Map	deployment,

												String	catalog_prefix)	{

								def	catalog	=	{	param	->	deployment["${catalog_prefix}.${param}"].replaceAll

('\"',	"")	}

								String	hrn	=	"";

								String	method	=	catalog("method")

								if	(method	==	"create")	{

CLIHelper	implementation

42

												hrn	=	json(

																				"olp	catalog	create	${catalog("id")}${optional("",	deployment.s

uffix)}	${catalog("name")}	"

																												+	"--summary	${quote(catalog("summary"))}").hrn

												cleanup_list.add("olp	catalog	delete	${hrn}")

												run(

																				"olp	catalog	update	${hrn}	--config	${catalog_configurations_pa

th}/${catalog("config")}	"

																												+	"--name	${catalog("name")}")

												run(

																				"olp	catalog	permission	grant	${hrn}	"

																												+	"--group	${deployment.group_id}	"

																												+	"--read	--write	--share	--manage")

								}	else	if	(method	==	"use")	{

												hrn	=	catalog("hrn")

								}	else	{

												context.error("Unsupported	method	for	catalog	${catalog_prefix}:	${meth

od}")

								}

								return	hrn

				}

				private	void	clearFile(file)	{

								context.sh("echo	>	${file}")

				}

				private	void	addProperty(key,	value,	file)	{

								context.sh("echo	\'${key}	=	\"${value}\"\'	>>	${file}")

				}

				/**

					*	Prepares	pipeline-config.conf	file	for	the	specified	deployment	recipe

					*

					*	@param	pipeline_config_path	Path	to	the	created	file

					*	@param	catalog_configurations_path	Path	to	the	catalog	configuration	directo

ry

					*	@param	deployment	Deployment	description

					*	@return

					*/

				public	Map	preparePipelineConfig(

												String	pipeline_config_path,

												String	catalog_configurations_path,

												Map	deployment)	{

								Map	hrns	=	[:]

								//	Create	empty	file

								clearFile(pipeline_config_path)

								//	Add	input	catalogs

CLIHelper	implementation

43

								def	input_catalogs	=	deployment.input_catalog_ids.split("	")

								input_catalogs.each	{	id	->

												def	id_stripped	=	id.replaceAll('\"',	"")

												hrns[id_stripped]	=	prepareCatalog(

																				catalog_configurations_path,

																				deployment,

																				"input-catalogs.${id_stripped}")

												addProperty("pipeline.config.input-catalogs.${id_stripped}.hrn",	hrns[i

d_stripped],	pipeline_config_path)

								}

								//	Add	output	catalog

								hrns["output"]	=	prepareCatalog(

																catalog_configurations_path,

																deployment,

																"output-catalog")

								addProperty("pipeline.config.output-catalog.hrn",	hrns["output"],	pipeline_

config_path)

								return	hrns

				}

				/**

					*	Deploys	a	new	version	of	the	pipeline

					*	@param	deployment	deployment	description

					*	@param	artifact_path	path	to	fat	JAR	uploaded	to	Pipeline	Service

					*	@param	pipeline_config_path	path	to	pipeline-config.conf	file

					*	@return	a	map	containing	keys	pipeline_id	and	version_id

					*/

				public	Map	deployPipeline(Map	deployment,	artifact_path,	pipeline_config_path)	{

								String	prefix	=	""

								if	(deployment.prefix	!=	null)	{

												prefix	=	deployment.prefix

								}

								String	suffix	=	""

								if	(deployment.suffix	!=	null)	{

												suffix	=	deployment.suffix

								}

								def	result	=	[:]

								if	(deployment.pipeline_id	==	null)	{

												result["pipeline_id"]	=	json(

																				"olp	pipeline	create	"

																												+	"${quote(prefix	+	deployment.pipeline_name	+	suffix)}

	${deployment.group_id}	"

																												+	optional("--description",	quote(deployment.pipeline_d

CLIHelper	implementation

44

escription))).id

												cleanup_list.add("olp	pipeline	delete	${result["pipeline_id"]}")

								}	else	{

												result["pipeline_id"]	=	deployment.pipeline_id

								}

								result["template_id"]	=	json(

																"olp	pipeline	template	create	"

																								+	"${quote(prefix	+	deployment.pipeline_template_name	+	suf

fix)}	"

																								+	"${deployment.pipeline_type}	${artifact_path}	${deploymen

t.class_name}	"

																								+	"${deployment.group_id}	"

																								+	"--input-catalog-ids	${deployment.input_catalog_ids}").id

								cleanup_list.add("olp	pipeline	template	delete	${result["template_id"]}")

								result["version_id"]	=	json(

																"olp	pipeline	version	create	"

																								+	"jenkins-created-version${suffix}	${result["pipeline_id"]

}	${result["template_id"]}	"

																								+	pipeline_config_path	+	"	"

																								+	optional("",	deployment.pipeline_version_options)).id

								cleanup_list.add("olp	pipeline	version	delete	${result["pipeline_id"]}	${re

sult["version_id"]}")

								return	result

				}

				/**	Clean	up	the	data	provisioned	using	CLI	helper

					*

					*		The	clean	up	is	exexcuted	in	the	order	reverse	to	the	order	of	commands	tha

t	created

					*		removed	objects.

					*/

				@NonCPS

				public	void	cleanUp()	{

								cleanup_list.reverseEach	{	command	->

												context.echo("Executing	cleanup	command:	${command}")

												try	{

																run(command)

												}	catch	(Exception	e)	{

																context.echo("Failed	to	clean	up	the	resource.")

												}

								}

				}

				public	void	getOlpCliFromSDK(String	sdk_version,	String	mavenSettings	=	"-q	-s	

CLIHelper	implementation

45

\$MAVEN_SETTINGS")	{

								this.sdk_version	=	sdk_version

								this.olp_cli_path	=	"${envs.WORKSPACE}/target/dependency/sdk-${this.sdk_ver

sion}/tools/OLP_CLI/"

								context.sh(script:

																"mvn	-B	"	+	mavenSettings	+	"	dependency:unpack	"	+

																								"-Dartifact=com.here.platform:sdk:${sdk_version}:zip	"	+

																								"-Dproject.basedir=${envs.WORKSPACE}")

				}

				public	Map	json(String	command)	{

								def	cliOutput	=

																context.withEnv(["PATH=${this.olp_cli_path}:${envs.PATH}"])	{

																				context.sh(

																												script:	"${command}	--json",

																												returnStdout:	true).trim()

																}

								return	context.readJSON(text:	cliOutput)

				}

				public	String	run(String	command)	{

								def	cliOutput	=

																context.withEnv(["PATH=${this.olp_cli_path}:${envs.PATH}"])	{

																				context.sh(

																												script:	command,

																												returnStdout:	true).trim()

																}

								return	cliOutput

				}

}

CLIHelper	implementation

46

	CI/CD and OLP
	CI/CD Workflow
	Workflow Setup
	Workflow Steps
	Example Build and Test Implementation
	Example Validation Implementation
	Example Deployment Implementation

	Product Acceptance Test

	Jenkins Setup
	CLIHelper implementation

