
Open	Location	Platform	-	Data	User's	Guide
User	Guide

Version	2.3



Legal	Notices
©	2019	HERE	Global	B.V.	and	its	Affiliate(s).	All	rights	reserved.

This	material,	including	documentation	and	any	related	computer	programs,	is	protected	by	copyright	controlled	by
HERE.	All	rights	are	reserved.	Copying,	including	reproducing,	storing,	adapting	or	translating,	any	or	all	of	this
material	requires	the	prior	written	consent	of	HERE.	This	material	also	contains	confidential	information,	which	may
not	be	disclosed	to	others	without	the	prior	written	consent	of	HERE.

Trademark	Acknowledgements

HERE	is	trademark	or	registered	trademark	of	HERE	Global	B.V.	Other	product	and	company	names	mentioned
herein	may	be	trademarks	or	trade	names	of	their	respective	owners.

Disclaimer

This	content	is	provided	"as-is"	and	without	warranties	of	any	kind,	either	express	or	implied,	including,	but	not
limited	to,	the	implied	warranties	of	merchantability,	fitness	for	a	particular	purpose,	satisfactory	quality	and	non-
infringement.	HERE	does	not	warrant	that	the	content	is	error	free	and	HERE	does	not	warrant	or	make	any
representations	regarding	the	quality,	correctness,	accuracy,	or	reliability	of	the	content.	You	should	therefore
verify	any	information	contained	in	the	content	before	acting	on	it.

To	the	furthest	extent	permitted	by	law,	under	no	circumstances,	including	without	limitation	the	negligence	of
HERE,	shall	HERE	be	liable	for	any	damages,	including,	without	limitation,	direct,	special,	indirect,	punitive,
consequential,	exemplary	and/	or	incidental	damages	that	result	from	the	use	or	application	of	this	content,	even
if	HERE	or	an	authorized	representative	has	been	advised	of	the	possibility	of	such	damages.

1



Document	Information

Product

Name: Open	Location	Platform	-	Data	User's	Guide

Version: Version	2.3

	

Document

Name: Open	Location	Platform	-	Data	User's	Guide

ID: 529f33b2-1484-431e-b725-180a30e7934f

Status: FINAL

Date: 2019-02-21T21:07:00.695Z

	

2



Table	of	Contents

Introduction

Concepts

Catalogs

Layers

Schemas

Partitions

HERE	Resource	Names

Data	Limits	and	Cost

Data	Security

How	To

Catalogs

Create	a	Catalog

Delete	a	Catalog

Share	a	Catalog

Edit	Metadata

Work	With	GeoJSON	Data

Layers

Create	a	Layer

Stream	Layer	Settings

Versioned	Layer	Settings

Volatile	Layer	Settings

Index	Layer	Settings

Reconfigure	a	Layer

Schemas

Update	a	Schema

Browse	Schemas

Create	a	Schema

Share	a	Schema

Delete	a	Schema

3



Introduction

In	the	HERE	Open	Location	Platform,	data	consists	of	both	maps	and	location	information	that	HERE	provides,	such
as	Real-Time	Traffic	and	Weather,	as	well	as	data	that	you	and	other	users	provide.	The	HERE	Open	Location
Platform	Portal	provides	access	to	many	activities	related	to	data,	including	discovering,	managing,	and	visualizing
the	data.

For	the	terms	and	conditions	covering	this	documentation,	see	the	HERE	Documentation	License.

Discover	Data

The	HERE	Open	Location	Platform	Portal	is	where	you	can	start	exploring	data.	The	Portal	helps	business	analysts,
data	scientists,	and	developers	to	explore	data	by	browsing,	filtering,	and	searching	for	catalogs	as	well	as	layers.
Click	Data	in	the	navigation	bar	to	see	a	list	of	catalogs	and	layers	that	you	have	permission	to	read.	When	you	find
data	of	interest,	you	can	perform	a	deeper	analysis	using	Notebooks.

A	catalog	is	a	collection	of	layers	that	are	logically	managed	as	a	single	set.	Click	on	a	catalog	to	view	its	details.
The	catalog	details	page	presents	all	the	catalog	metadata,	such	as	description,	tags,	data	coverage,	creation	date,
HERE	Resource	Name	(HRN),	and	a	list	of	the	layers	in	the	catalog.	For	more	information,	see	Catalogs.

A	layer	contains	semantically	related	data	and	can	be	overlaid	spatially	to	construct	a	complete	digital	map.	For
example,	a	catalog	might	contain	a	layer	which	contains	road	sign	data	and	another	layer	containing	road	topology
data.	A	layer	can	be	used	in	one	or	more	catalogs.	For	more	information,	see	Layers.

Each	layer	is	divided	into	partitions.	A	partition	divides	the	data	in	a	layer	into	reasonable	units	for	caching	and
processing.	For	more	information,	see	Partitions.

The	Portal	contains	rich	metadata	about	both	catalogs	and	layers.	This	metadata	shows	the	origin,	provider,
coverage,	and	freshness	of	the	data.	You	can	view	geographic	data	coverage	on	a	map	and,	for	certain	data	types,
view	the	data	itself	on	a	map.	You	can	also	examine	data	more	closely	by	reviewing	and	downloading	schemas	and
decoded	data.	In	summary,	the	Portal	is	the	best	path	for	exploring	data	when	you	are	not	sure	which	data	you	are
interested	in	using.

Manage	Data

Apart	from	data	discovery,	you	can	use	the	Portal	to	create	and	manage	different	data	assets.	Catalogs,	layers,	and
pipelines	can	all	be	created,	configured,	managed,	and	shared	using	the	Portal.	To	create	schemas	you	must	use
the	schema	archetype	in	the	HERE	Open	Location	Platform	SDK.

Note

You	must	have	the	HERE	Workspace	Plan	to	create	pipelines	and	schemas.

Visualize	Data

The	Portal	is	a	useful	tool	for	investigating	or	visualizing	data	processing	output	on	a	map.	Click	Data	and	navigate
to	the	data	layer,	then	review	the	layers	details	page.	On	this	page,	you	can	also	see	the	list	of	partitions	in	the
layer.	The	partitions	are	geographic	tiles	if	latitude/longitude	information	is	included.

Introduction

4

https://platform.here.com
https://legal.here.com/en-gb/terms/documentation-license


Other	Ways	of	Working	With	Data

Aside	from	the	Portal,	the	HERE	Open	Location	Platform	provides	other	ways	of	working	with	data.

Command	Line	Interface

The	command	line	interface	(CLI)	is	part	of	the	HERE	Open	Location	Platform	SDK.	It	offers	the	same	data
management	functions	that	are	available	in	the	Portal	(such	as	creating	catalogs	and	layers,	listing	catalogs	and
layers,	getting	metadata)	but	the	HERE	Open	Location	Platform	CLI	enables	you	to	execute	these	commands	from
the	command	line.	Further,	commands	can	be	stored	in	scripts	so	you	can	run	repetitive	commands	easily.	The
HERE	Open	Location	Platform	CLI	will	most	likely	be	your	interface	of	choice	when	working	with	the	HERE	Open
Location	Platform	for	this	reason.

The	CLI	is	useful	for:

Developers	who	want	programmatic	access	to	the	functions	available	in	the	Portal
Developers	and	administrators	who	want	to	automate	data	management	tasks	in	scripts

For	more	information,	see	the	HERE	Open	Location	Platform	CLI	Guide.

Note

You	must	have	the	HERE	Workspace	Plan	to	access	the	CLI.

Data	Client	Library

The	Data	Client	Library	is	a	Java/Scala	library	you	can	use	to	read	and	write	data	to	the	HERE	Open	Location
Platform.	It	provides	a	layer	of	abstraction	from	the	REST	APIs	which	shields	you	from	changes	that	may	occur	to
HERE	Open	Location	Platform	APIs	as	they	evolve.	The	Data	Client	Library	also	reduces	the	complexity	involved	in
reading	and	writing	data,	reducing	the	time	it	takes	to	add	HERE	Open	Location	Platform	data	interaction	to	your
applications.

The	Data	Client	Library	is	useful	for:

Developers	who	want	to	incorporate	HERE	Open	Location	Platform	data	into	applications	written	in	Java	or
Scala
Developers	who	want	to	write	less	code	than	is	required	by	the	REST	APIs

For	more	information,	see	the	Data	Client	Library	Developer's	Guide	Guide.

Note

If	you	are	a	Marketplace	user	and	you	do	not	have	the	HERE	Workspace	Plan,	you	do	not	have	access	to	the	SDK.
See	the	Marketplace	Consumer	User's	Guide	or	the	Marketplace	Provider	User's	Guide	for	instructions	on
downloading	the	Data	Client	Library.

Data	API

The	Data	API	is	a	REST	API	that	provides	access	to	data	and	data	management	functions.	The	Data	API	is	useful	for:

Developers	who	want	to	incorporate	HERE	Open	Location	Platform	data	into	applications	written	in	something
other	than	Java	or	Scala
Developers	who	want	access	to	the	HERE	Open	Location	Platform	APIs

Introduction

5

https://developer.here.com/olp/documentation/open-location-platform-cli/content/user_guide/index.html
https://developer.here.com/olp/documentation/data-client-library/content/dev_guide/index.html


For	more	information,	see	the	Data	API	Developer's	Guide.

Introduction

6

https://developer.here.com/olp/documentation/data-store/content/data_dev_guide/index.html


Catalogs

The	HERE	Open	Location	Platform	stores	data	in	catalogs.	A	catalog	is	a	collection	of	data	that	is	managed	as	a
single	set.	Catalogs	contain	layers	that	represent	different	types	of	data.	In	the	case	of	map	data,	layers	can	be
overlaid	spatially	to	construct	a	complete	digital	map.	For	example,	a	catalog	may	contain	a	map	that	includes
layers	for	road	attributes,	topology,	and	signs.	While	catalogs	often	contain	geospatial	data,	catalogs	can	contain
any	kind	of	data.

A	catalog	can	contain	any	combination	of	layer	types.	For	more	information,	see	Layers.

The	image	below	shows	the	structure	of	catalogs.

Figure:	Catalog	Structure

Data	sharing	is	controlled	at	the	catalog	level.	You	can	share	an	entire	catalog,	including	all	its	layers.

Note

For	information	about	limits	and	cost	considerations,	see	Data	Limits	and	Cost.
For	information	about	data	security	and	durability,	see	Data	Security	and	Durability.

Catalogs

7



Layers

A	layer	is	a	set	of	partitions	of	a	specific	data	type,	functional	property,	and	structure.	You	can	use	layers	to
segment	data	based	on	semantics.	For	example,	in	a	catalog	you	can	have	one	layer	for	road	signs	and	another
layer	for	road	topology.	You	can	also	use	layers	to	segment	data	based	on	schema.	Layers	can	be	overlaid	spatially
to	construct	a	complete	digital	map.

There	are	four	types	of	data	layers:	versioned,	volatile,	index,	and	stream.

Note

For	information	about	limits	and	cost	considerations,	see	Data	Limits	and	Cost.
For	information	about	data	security	and	durability,	see	Data	Security	and	Durability.

Versioned	Layers

A	versioned	layer	stores	slowly-changing	data	that	must	remain	logically	consistent	with	other	layers	in	the	catalog.
When	you	want	to	update	a	catalog	of	versioned	layers,	all	the	layers	related	to	the	update	(and	partitions	within	a
layer)	must	be	updated	in	one	publication	so	that	they	can	be	versioned	together.	For	example,	the	HERE	Map
Content	catalog	contains	several	versioned	layers,	including	Topology	(road	topology),	Road	(road	attributes),	and
Place	(points	of	interest).	In	each	version	of	the	catalog,	these	layers	represent	a	consistent	view	of	the	world	at
that	point	in	time.	If	a	new	road	is	built	and	there	are	new	buildings	containing	new	businesses	along	the	new	road,
all	three	layers	would	need	to	be	updated	together	in	one	publication	so	that	in	the	new	version	of	the	catalog	the
Topology	layer	contains	the	new	road,	the	Road	layer	contains	the	attributes	for	the	new	road,	and	the	Place	layer
contains	the	names	of	the	new	businesses.	If	only	the	Place	layer	were	to	be	updated	with	the	new	businesses,	the
layers	would	no	longer	represent	a	consistent	view	of	the	world	because	the	Topology	and	Road	layers	would	be
missing	the	new	road.

To	achieve	consistency	between	layers,	any	update	that	affects	multiple	layers	must	be	published	together	in	a
publication.	Updating	multiple	partitions	of	a	versioned	layer	also	happens	in	a	publication	to	preserve	the
consistency	and	integrity	of	intra-layer	and	inter-layer	references.	A	new	catalog	version	is	available	only	when	all
layers	have	been	updated	and	the	publication	has	been	finalized.

Note

It	is	the	data	publisher's	responsibility	to	ensure	that	a	publication	results	in	a	consistent	set	of	layers	that
accurately	represent	the	world.	Extensive	support	is	provided	to	produce	consistent	content	for	versioned	layers	in
the	HERE	Open	Location	Platform	Data	Validation	Library.	You	must	have	the	HERE	Workspace	Plan	to	use	the	Data
Validation	Library.

You	can	access	data	as	it	existed	at	different	points	in	time	by	referencing	the	version	you	want.	Once	a	version	has
been	published,	the	data	in	that	version	cannot	be	changed	and	can	be	removed	only	by	removing	the	whole
catalog	version.	Data	within	a	version	is	immutable	and	consistent.

How	Data	is	Versioned

The	initial	version	of	a	catalog,	before	any	data	has	been	published	to	it,	is	-1.	When	data	in	a	versioned	layer	is
updated:

Layers

8



The	catalog	version	is	incremented	by	one
All	layers	and	partitions	that	are	updated	in	the	publication	have	their	versions	updated	to	match	the	new
catalog	version
All	layers	and	partitions	that	are	not	updated	retain	their	existing	version	number
Layers	and	partitions	that	are	not	updated	keep	their	existing	version	numbers

It	is	important	to	note	that	only	those	layers	and	partitions	that	are	updated	have	their	version	updated	to	the
catalog's	new	version	number.	So,	the	version	of	a	layer	or	partition	represents	the	catalog	version	in	which	the
layer	or	partition	was	last	updated.

Requesting	a	Version

When	you	request	a	particular	version	of	data	from	a	versioned	layer,	the	partition	that	gets	returned	may	have	a
lower	version	number	than	you	requested.	The	following	example	illustrates	this	concept:

Figure:	Image	showing	an	example	of	partition	versions	returned	for	different	catalog	versions

The	red	arrows	show	requests	for	data	from	particular	versions.	The	dots	along	the	line	represent	changes	to	a
partition	over	time.	The	partition	has	been	updated	at	catalog	versions	1,	12,	24,	27,	35,	42,	and	48.	The	current
catalog	version	is	56.

The	table	below	shows	which	partition	version	is	returned	for	requests	to	different	catalog	versions.

REQUESTED	VERSION PARTITION	VERSION

5 1

15 12

23 12

32 27

35 35

50 48

Volatile	Layers

A	volatile	layer	is	a	key/value	store	where	values	for	a	given	key	can	change	and	only	the	latest	value	is	retrievable.
As	new	data	is	published,	old	data	is	overwritten.

Volatile	layers	use	in-memory	storage.	Storing	data	in	memory	helps	reduce	data	access	latency	and	provides
applications	with	consistently	high	throughput.

Consider	using	a	volatile	layer	when	you	don't	need	older	versions	of	the	data.	For	example,	if	you	want	to	make
the	latest	weather	information	available,	you	could	use	a	volatile	layer	to	store	the	latest	observations.	When	new
weather	observations	are	written	to	the	layer,	the	old	one	is	overwritten	so	that	only	the	latest	observations	are

Layers

9



available	for	data	consumers.

Another	use	for	a	volatile	layer	is	as	a	cache	for	applications	requiring	fast	response	times	and	consistently	high
throughput.	When	running	complex,	time-consuming	computations,	it	is	valuable	to	cache	the	computation	results
for	future	use.	Correctly	caching	values	that	are	accessed	frequently	not	only	reduces	the	load	on	the	rest	of	the
components	in	the	cloud	but	also	helps	speed	up	responses	to	other	clients	requesting	the	same	data.	For
example,	say	a	client	application	performs	a	complex	query	that	requires	fetching	data	from	five	different
versioned	layers,	sorting	the	data,	matching	the	data,	and	running	statistical	analysis	on	the	data	to	compute	an
optimized	parameter.	If	it	is	likely	that	another	client	will	request	the	same	query,	then	the	result	of	this	complex
query	is	a	good	candidate	for	caching	in	a	volatile	layer.	This	way,	millions	of	clients	can	benefit	from	fast	response
times	when	submitting	the	same	request.	At	the	same	time,	the	load	on	versioned	layers	and	pipelines	is
significantly	reduced.

Index	Layers

An	index	layer	is	part	of	an	overall	solution	that	enables	you	to	index	and	store	metadata	and	data	in	a	way	that	is
optimized	for	batch	processing.	The	index	layer	itself	is,	as	its	name	suggests,	an	index	of	the	catalog’s	data	by
attributes	that	you	can	later	query.	For	example,	if	you	want	to	run	a	batch	process	daily	to	find	all	pothole
detection	events	recorded	that	day	in	the	area	surrounding	a	given	city,	you	can	use	an	index	layer	to	index	the
pothole	detection	events	by	event	time,	event	type,	and	location.	You	can	then	query	the	data	every	24	hours	for
pothole	events	in	the	area	of	the	city	as	part	of	your	batch	process.	Index	layers	provide	the	flexible	solution	you
need	to	easily	store	attributes	of	pothole	events	along	with	the	location/time	the	event	took	place.

Like	versioned	layers,	index	layers	are	useful	when	you	want	to	access	historical	data.	The	difference	is	that	an
index	layer	can	be	used	when	you	do	not	need	to	maintain	logical	consistency	across	layer	versions	in	the	way
versioned	layers	do.	The	other	difference	is	that	you	can	define	your	own	attributes	by	which	you	want	to	index	and
query	the	data,	whereas	you	cannot	define	your	own	attributes	in	versioned	layers.

You	can	use	an	index	layer	in	combination	with	a	pipeline	to	append	and	get	late	events	by	event	time.	This	ability
to	properly	handle	late	events	is	important	when	your	end	user	devices	are	online	and	offline	at	different	times
and	where	batches	of	data	sent	can	include	events	with	varying	timestamps	that	need	to	be	indexed	appropriately
with	other	events	already	received.

Index	layers	work	in	combination	with	the	Data	Archiving	Library,	which	is	available	in	the	SDK.	For	more
information	about	the	Data	Archiving	Library,	see	the	Data	Archiving	Library	Developer's	Guide.

Stream	Layers

A	stream	layer	is	a	queue	that	streams	data	to	data	consumers	in	real	time.	Consumers	read	the	data	in	the	order	it
is	added	to	the	queue.	Once	a	consumer	reads	the	data,	the	data	is	no	longer	available	to	that	consumer,	but	the
data	remains	available	to	other	consumers.

Stream	layers	can	be	configured	with	a	retention	time,	or	time-to-live	(TTL)	which	results	in	unconsumed	data	being
removed	after	a	specified	period	of	time.

An	example	use	of	a	stream	layer	is	to	handle	data	from	vehicle	sensors.

Layers

10

https://developer.here.com/olp/documentation/data-archiving-library/dev_guide/index.html


Layers

11



Schemas

Schemas	define	the	organization	of	data	in	each	partition	of	a	layer,	both	the	structure	of	the	data	and	its	content.
In	the	HERE	Open	Location	Platform,	schemas	are	defined	using	Protocol	Buffers.	If	you	are	reading	or	writing	data
to	a	layer,	use	the	layer's	schema	to	understand	the	structure	of	the	data	you	receive,	and	the	way	your	data
should	be	structured	to	write	it	to	the	layer.	Schemas	are	also	used	by	pipelines	to	operate	on	data.

If	you	are	creating	your	own	catalog	and	layers,	including	a	schema	for	each	layer	enables	you	to	share	data	with
others	by	defining	how	others	should	consume	the	data.

Changing	Schemas

Once	you	assign	a	schema	to	a	layer	the	only	change	you	can	make	to	the	schema	assignment	is	to	change	the
schema	to	a	newer	minor	version	or	patch	version	of	the	same	schema.

When	changing	the	schema	assigned	to	a	layer,	you	cannot:

Change	to	a	different	schema
Upgrade	to	a	newer	major	version
Downgrade	to	a	prior	version
Change	the	schema	to	"None"

For	example,	if	you	assign	the	schema	RT	Traffic	1.1.0	to	a	layer,	you	can	update	the	layer	to	a	newer	minor	version
such	as	1.2.0	or	a	newer	patch	version	such	as	1.1.1.	You	cannot	upgrade	it	to	2.0.0	or	downgrade	it	to	1.0.0.

The	HERE	Open	Location	Platform	includes	services	that	enable	you	to	create,	store,	and	share	schemas,	as	well	as
leverage	HERE-provided	schemas.	To	view	schemas,	log	in	to	the	Portal,	click	Data	then	click	Browse	Schemas.

HERE	Schemas

HERE	provides	several	complex	schemas	which	are	used	in	HERE	data	and	are	available	for	you	to	use	with	your
own	data	layers.	Examples	of	HERE	schemas	include	Sensor	Data	Ingestion	Interface	(SDII),	Weather,	Real	Time
Traffic,	and	several	map	data	schemas.	Using	these	schemas	provides	advantages,	including:

Standardization:	HERE	schemas	enable	users	with	similar	data	to	leverage	a	standard	format,	reducing
disparities	in	what	is	provided,	and	providing	common	attribute	nomenclature.
Sharing:	Data	sharing	between	users	and	systems	is	made	easier	with	HERE	schemas	in	the	following	ways.
First,	some	functions	like	showing	data	coverage	on	a	map	or	visualizing	event-level	details	may	work	more
smoothly	when	you	use	platform	schemas.	Second,	standardized	descriptions	included	in	HERE	schemas	help
users	better	understand	the	data	and	how	to	read	it.

User-Defined	Schemas

User-defined	schemas	are	ones	that	describe	the	structure	of	data	in	user-created	catalogs.	To	create	a	custom
schema,	download	the	SDK	and	leverage	the	Schema	Archetype	project.	Schemas	are	held	to	the	same	privacy
standards	as	the	data	itself,	which	means	that	all	schemas	and	data	are	private	by	default.	Only	the	schema	creator
can	access	the	schema	until	it	is	shared	or	used	within	the	HERE	Open	Location	Platform	to	operate	on	the	data	or
visualize	the	data	on	a	map.

Schemas

12

https://developers.google.com/protocol-buffers/
https://developer.here.com/olp/documentation/sdii-data-spec/topics/introduction.html
https://developer.here.com/olp/documentation/weather-data/topics/introduction.html
https://developer.here.com/olp/documentation/traffic-data/topics/introduction.html


Note

You	must	have	the	HERE	Workspace	Plan	to	create	a	schema.

Schema-less	Data

It	is	possible	to	ingest	schema-less	data	into	the	HERE	Open	Location	Platform.	Schema-less	data	may	be
appropriate	if	the	data	is	only	used	by	the	data	producer	and	never	shared.	Also,	if	you	are	working	with	GeoJSON
data,	you	do	not	need	a	schema.

Ingesting	schema-less	data	is	also	useful	if	you	want	to	reduce	the	initial	overhead	of	getting	your	data	into	the
HERE	Open	Location	Platform.	You	can	ingest	the	data	without	a	schema,	then	transform	the	data	using	a	schema
later.

Schemas

13



Partitions

Catalogs	are	divided	into	layers	which	in	turn	are	divided	into	partitions,	making	partitions	the	smallest	unit	of	data
in	the	system.	Partitions	are	key	values	within	a	catalog	and	layers	are	a	namespace	for	partitions.	This	makes	the
catalog	(with	layer	and	partition)	a	key-key-value	store.

Partitions	can	store	any	binary	data.	The	HERE	Open	Location	Platform	does	not	need	to	understand	the	structure
of	the	data	in	a	partition	since	it	does	not	need	to	decode	it.	Data	is	published	and	retrieved	without	modification.
However,	you	can	define	the	structure	and	encoding	of	the	data	by	associating	a	schema	with	the	layer.	This
defines	the	data	structure	and	encoding	for	the	partitions	in	the	layer	so	that	data	producers	and	consumers	know
how	to	encode	and	decode	the	data.

Partitions	are	named	according	to	one	of	two	partitioning	schemes:

Generic	partitioning
HERE	tile	partitioning

There	are	a	couple	reasons	why	understanding	partitioning	schemes	is	important.	First,	when	you	are	creating	a
catalog,	you	need	to	select	the	partitioning	scheme	to	use	for	the	catalog,	and	you	need	to	choose	the	one	best
suited	to	the	data	you	are	going	to	store	in	the	catalog.	Second,	when	you	are	querying	a	catalog	or	publishing	data
to	a	catalog,	you	need	to	know	the	partitioning	scheme	used	so	that	you	can	understand	how	to	reference
partitions	by	their	name.

Generic	Partitioning

Generic	partitioning	is	the	simplest	form	of	partitioning.	Partition	names	have	no	semantic	meaning.	Generic
partitioning	is	best	suited	to	data	other	than	map	data,	such	as	search	index	data.

HERE	Tile	Partitioning

HERE	Tile	partitioning	is	a	method	for	storing	map	data.	In	HERE	Tile	partitioning,	layers	contain	rectangular
geographic	tiles	that	represent	an	area	of	the	map.	These	tiles	are	also	known	as	partitions.	If	you	use	HERE	Tile
partitioning,	you	can	take	advantage	of	the	HERE	Open	Location	Platform	libraries	and	APIs	to	perform	geo-related
tasks.

To	use	HERE	Tile	partitioning,	you	need	to	know	how	map	data	is	partitioned	so	that	you	can	read	and	write	data.

Map	Tiling

The	process	of	dividing	map	data	into	partitions	is	called	tiling.	The	HERE	Tile	tiling	scheme	is	based	on	quadtrees.
A	quadtree	is	a	tree	data	structure	in	which	each	internal	node	has	exactly	four	children.	Quadtrees	partition	a	two-
dimensional	space	by	recursively	subdividing	it	into	four	tiles.	The	child	tiles	are	numbered	0-3	in	a	fixed	reverse
"Z"	pattern:

Partitions

14



Tile	0	is	the	southwest	sub-tile
Tile	1	is	the	southeast	sub-tile
Tile	2	is	the	northwest	sub-tile
Tile	3	is	the	northeast	sub-tile

Tile	Level

A	tile's	level	refers	to	how	many	tiles	were	subdivided	to	produce	the	tile.	For	example,	in	the	following	diagram,
tile	4	(	100		in	binary)	is	at	level	1	and	tile	24	(	11000		in	binary)	is	at	level	2.

The	maximum	tile	level	is	31.	At	this	level,	each	tile	is	approximately	0.0187	meters	square	near	the	equator.

Partitions

15



HERE	Tile	tiling	is	based	on	raw,	non-projected	WGS84	latitude/longitude	coordinate	values,	so	each	child	tile
covers	exactly	half	its	parent's	latitude/longitude	range	per	side.

Note

This	scheme	results	in	non-square	tiles	when	viewed	on	a	common	Mercator	projected	2D	map,	with	the	effect
more	pronounced	further	from	the	equator.

HERE	Tile	IDs

Each	tile	in	the	map	has	an	identifier	called	a	HERE	Tile	ID.	A	HERE	Tile	ID	is	a	64-bit	unsigned	integer	computed
from	the	tile's	quadkey.	A	quadkey	is	a	string	of	numbers	(0-3)	which	captures	the	hierarchy	of	parent-child	tiles
from	level	1	to	the	target	tile	level.

For	example,	for	the	level	5	tile	containing	San	Francisco	in	the	map	below,	the	quadkey	would	be		02123		because
the	parent	tile	is		0212	,	and	the	child	tile	containing	San	Francisco	is		3	:

In	this	second	example,	the	quadkey	for	the	child	tile	containing	the	Berlin	Hauptbahnhof	(central	train	station)	is
	122012031202200		because	the	parent	tile's	quadkey	is		12201203120220		and	the	quadkey	of	the	child	tile	containing
the	Berlin	Hauptbahnhof	is		0	.

Partitions

16



You	can	determine	the	level	of	a	tile	by	the	number	of	digits	in	the	quadkey.	For	example,	the	quadkey	for	a	level	14
tile	will	have	14	digits.

To	determine	a	tile's	HERE	Tile	ID	from	its	quadkey,	use	the	following	algorithm.	To	illustrate	the	algorithm,	the
example	values	use	the	level	14	tile	of	Berlin	as	shown	above.

1.	 Prepend	the	quadkey	with	a	1:
12201203120220	=	112201203120220

2.	 Convert	the	quadkey	from	base	4	to	base	10:
112201203120220 	=	377894440

3.	 The	resulting	base	10	number	is	the	HERE	Tile	ID:
377894440

Note

HERE	Location	Libraries	provide	a		TileResolver		that	you	can	use	to	calculate	HERE	Tile	IDs.	If	you	are	using	Scala
or	Java,	you	can	use	the		mapquad		library	for	the	same	purpose.

HERE	Tile	Coordinate	Ranges

The	normal	coordinate	range	on	a	world	map	is	-180°	to	+180°	longitude	and	-90°	to	+90°	latitude.	However,	in
HERE	Tile	partitioning,	the	level	0	root	tile	representing	the	entire	world	is	augmented	with	a	virtual	counterpart
north	of	the	North	Pole.	This	is	done	to	avoid	special	handling	of	level	1	tiles.	As	a	result,	the	base	coordinate	range
in	HERE	Tile	partitioning	is	-180°	to	+180°	longitude	and	-90°	to	+270°	latitude,	making	the	level	0	world	tile	a
square	with	sides	of	360°.	From	here,	the	root	world	tile	is	split	in	the	standard	quadtree	way	into	four	tiles	at	level
1,	resulting	in	tiles	0	and	1	covering	the	world	and	tiles	2	and	3	generally	unused.

4 10

Partitions

17



Note	the	following	special	cases:

Longitude	values	of	+180°	are	converted	to	-180°,	so	tile	references	"wrap"	over	the	anti-meridian.
Latitude	values	of	+90°	are	owned	by	their	southern	tiles.

Calculating	Latitude/Longitude	Degrees	for	a	Tile	Level

The	latitude	and	longitude	range	for	a	tile	can	be	calculated	as:

360°/2

So	for	level	14	tiles,	the	latitude/longitude	range	would	be	calculated	as:

360°/2 	=	360°/16384	=	0.02197265625°	per	tile

Tiling	schemes	always	result	in	a	question	of	which	tile	contains	a	latitude/longitude	location	that	lies	on	a	tile
boarder.	For	the	HERE	Tile	scheme,	locations	lying	on	the	south-west	border	of	a	tile	belong	to	that	tile.

Identifying	the	HERE	Tile	ID	for	a	Latitude/Longitude

The	tile	HERE	Tile	ID	for	any	latitude/longitude	position	at	a	given	tile	level	can	be	calculated	algorithmically	using
a	version	of	Morton	coding.	Take	this	example	for	the	Berlin	Hauptbahnhof	(central	train	station)	at
latitude/longitude	coordinates	52.52507/13.36937.

tile	level

14

Partitions

18



Let's	calculate	the	level	14	HERE	Tile	ID	for	this	location.	First,	we	need	to	calculate	the	desired	tile's	X,Y	coordinates
on	the	world	map.	Tile	X,Y	coordinates	are	not	latitude/longitude	values,	they	are	the	tile's	integral	positional
coordinates,	indexed	from	(0,0)	in	the	southwest	corner	of	the	world	map.

1.	 Find	the	horizontal	(X)	tile	index	from	the	longitude	value	by	dividing	the	world	map	longitude	range	(-180°	to
+180°)	into	tile-sized	ranges	based	on	the	desired	tile	level.	As	described	in	HERE	Tile	Coordinate	Ranges,	each
level	14	tile	covers	0.02197265625	degrees	per	tile:
180°	+	13.36937°	=	193.36937°	absolute	longitude	offset	from	south-west	corner
193.36937°	/	0.02197265625°	=	8,800.45	=	tile	X:	8,800	(round	down	for	0-based	indexing)

2.	 Find	the	vertical	(Y)	tile	index,	making	sure	to	use	the	latitude	range	-90°	to	+270°	as	described	in	HERE	Tile
Coordinate	Ranges.
90°	+	52.52507°	=	142.52507°	absolute	latitude	from	the	south-west	corner
142.52507°/0.02197265625°	=	6,486.47	=	tile	Y:	6,486	(round	down	for	0-based	indexing)

3.	 Convert	the	tile	X,	Y	indexes	(8800,	6486)	and	tile	level	(14)	into	a	Morton	code	quadkey.	To	do	this,	take	the
simple	binary	representation	of	the	tile	coordinate	indexes,	zero-padded	to	the	number	of	bits	in	the	tile	level:
Tile	X	coordinate:	8800	=	10001001100000 	(already	14	bits)
Tile	Y	coordinate:	6486	=	01100101010110 	(zero-padded	to	14	bits)

4.	 Interleave	the	bits	of	the	binary	values,	starting	with	the	first	bit	of	the	Y-coordinate:
Interleaved	Y/X	=	01101000011000110110001010002

5.	 Convert	the	resulting	binary	value	to	a	base	4	integer	to	get	the	quadkey	string:
0110100001100011011000101000 =	12201203120220

So,	the	quadkey	for	the	Berlin	Hauptbahnhof	(central	train	station)	at	latitude/longitude	coordinates
52.52507/13.36937	is	12201203120220.	Here	is	the	quadkey	on	the	map:

2
2

2 4

Partitions

19



The	final	step	is	to	encode	the	tile's	quadkey	as	a	HERE	Tile	ID:

1.	 Prepend	the	quadkey	with	a	1:
12201203120220	=	112201203120220

2.	 Convert	the	quadkey	from	base	4	to	base	10:
112201203120220 	=	377894440

3.	 The	resulting	base	10	number	is	the	HERE	Tile	ID	for	the	latitude/longitude	coordinates	52.52507/13.36937:
377894440

4 10

Partitions

20



HERE	Resource	Names

A	HERE	Resource	Name	(HRN)	is	a	unique	identifier	for	resources	such	as	catalogs,	schemas,	and	pipelines.	Here's
an	example	of	an	HRN:

hrn:here:data:::olp-traffic-1

The	HRN	is	generated	by	the	HERE	Open	Location	Platform	when	the	resource	is	created.	Its	structure	can	vary,	so
you	should	not	try	to	parse	HRNs	or	infer	any	meaning	from	them.	Once	a	resource	is	created	you	cannot	change
the	resource's	HRN.

HERE	Resource	Names

21



Data	Limits	and	Cost

To	ensure	good	performance,	the	HERE	Open	Location	Platform	has	limits	on	data	storage	and	throughput.	Some
limits	can	be	controlled	by	layer	configuration,	which	may	impact	your	cost	since	you	are	charged	based	on	how
you	have	configured	the	layers	and	data	usage.	As	a	general	rule,	the	more	data	you	send	and	receive	from	the
HERE	Open	Location	Platform,	and	the	more	data	you	store,	the	more	you	will	be	charged.	You	will	also	be	charged
more	if	you	configure	layers	for	for	higher	performance.

You	are	charged	for	your	use	of	the	HERE	Open	Location	Platform	based	on	how	you	have	configured	the	layers	and
data	usage.

Versioned	Layers

Limits

Maximum	partition	size:	50	GB
We	recommend	that	you	do	not	exceed	24	MB/second	when	publishing	metadata

Cost	Considerations

Usage
You	are	charged	for	the	amount	of	metadata	and	data	stored	in	the	layer
You	are	charged	based	on	the	amount	of	data	you	read	and	write	using	the		blob		and		metadata		APIs

Configuration
There	are	no	layer	configuration	settings	that	affect	cost

Volatile	Layers

Limits

Maximum	partition	size:	2	MB
Maximum	throughput:	Determined	by	the	package	type	configured	for	the	layer.	The	larger	the	package	size,
the	greater	the	throughput.

Cost	Considerations

Usage
You	are	charged	based	on	the	amount	of	data	you	read	and	write	using	the		blob		API

Configuration
You	are	charged	based	on	the	package	type	configured	for	the	layer.	For	small,	medium,	and	large	package
types,	your	cost	triples	because	of	redundant	data	storage.	Experimental	packages	do	not	store	data
redundantly	so	you	are	charged	for	a	single	instance	only.
You	are	charged	based	on	the	retention	setting	configured	for	the	layer

Stream	Layers

Data	Limits	and	Cost

22



Limits

We	recommend	that	messages	be	smaller	than	1	MB	for	best	performance.
Maximum	throughput:	Determined	by	the	the	maximum	throughput	setting	configured	for	the	layer.	Catalogs	in
the	OLP	Marketplace	have	a	maximum	outbound	throughput	of	2	megabytes	per	second	(MBps).
The	maximum	amount	of	data	that	can	be	concurrently	stored	in	a	stream	layer	can	be	calculated	as	follows:
	(inbound	throughput)	x	(retention	time)	.

Cost	Considerations

Usage
Usage	does	not	affect	cost

Configuration
You	are	charged	based	on	the	maximum	throughput	configured	for	the	layer
You	are	charged	based	on	the	retention	setting	configured	for	the	layer

Index	Layers

Limits

It	is	recommended	to	group	messages	with	the	same	indexing	attributes	before	indexing	instead	of	storing
metadata	for	many	small	files	in	index	layer.
The	maximum	number	of	metadata	records	that	can	be	returned	by	a	single	query	is	100,000.	You	may	submit
multiple	queries	to	query	a	larger	set	of	results.

Cost	Considerations

Usage
You	are	charged	for	the	amount	of	metadata	and	data	stored	in	the	layer
You	are	charged	based	on	the	amount	of	data	you	read	and	write	using	the		blob		and		index		APIs

Configuration
You	are	charged	based	on	the	retention	setting	configured	for	the	layer

Data	Limits	and	Cost

23



Data	Security	and	Durability

The	HERE	Open	Location	Platform	protects	your	data	through	security	and	durability	practices.

Security

The	HERE	Open	Location	Platform	utilizes	industry-standard	data	security	best	practices	to	protect	your	data:

Data	stored	at	rest	in	versioned	layers,	stream	layers	and	index	layers	is	encrypted	using	AES-256,	a	strong,
proven,	block	cipher.	This	data	protection	includes	data	which	has	been	persisted	per	the	Time	to	Live	(TTL)
setting.	Data	stored	in	volatile	layers	is	not	encrypted.
Data	in	transit	between	OLP	and	your	applications	is	encrypted	using	the	TLS	1.2	cryptographic	protocol	and
the	strong	AES-256-GCM	cipher.
Within	OLP,	data	in	transit	is	also	encrypted	using	TLS	1.2.	Additional	or	different	protection	mechanisms	are
employed	as	needed.
HERE	secures	the	OLP	website	and	API	endpoints	with	trusted	certificates	issued	by	a	well-known	Certificate
Authority	(CA)	and	signed	using	a	SHA-256	algorithm.

Durability

Your	data	is	protected	from	loss	due	to	corruption	or	system	failure.	The	degree	of	durability	depends	on	the	layer
type.

Versioned	Layers

Versioned	layers	are	designed	to	provide	99.999999998%	durability	of	data	(both	blob	data	and	metadata)	over	a
given	year.	This	durability	level	corresponds	to	an	average	annual	expected	loss	of	0.000000002%	of	data
partitions.	For	example,	if	you	store	10,000,000	partitions	in	OLP,	you	can	on	average	expect	to	incur	a	loss	of	two
partitions	once	every	10,000	years.	While	OLP	data	is	currently	located	in	a	single	region	(EU-West),	Versioned	data
is	stored	redundantly	on	multiple	devices	across	a	minimum	of	three	independent	network	and	power	domains
within	that	region.

Index	Layers

Index	layers	are	designed	to	provide	99.999999998%	durability	of	data	over	a	given	year.	This	durability	level
corresponds	to	an	average	annual	expected	loss	of	0.000000002%	of	data	partitions.	For	example,	if	you	store
10,000,000	partitions	in	OLP,	you	can	on	average	expect	to	incur	a	loss	of	two	partitions	once	every	10,000	years.
While	OLP	data	is	currently	located	in	a	single	region	(EU-West),	Index	data	is	stored	redundantly	on	multiple
devices	across	a	minimum	of	three	independent	network	and	power	domains	within	that	region.

Volatile	Layers

Volatile	data	is	temporal.	Existing	data	is	overwritten	every	time	new	data	is	written	to	a	partition.	For	the	limited
time	that	volatile	data	(both	blob	data	and	metadata)	is	stored,	it	is	stored	redundantly	on	multiple	devices	across
a	minimum	of	three	independent	network	and	power	domains	within	a	single	region	(EU-West).	Failure	of	one
device	would	be	recovered	by	another.

Data	Security

24



Stream	Layers

Stream	data	is	replicated	across	multiple	devices	and	across	three	independent	network	and	power	domains	within
a	single	region	(EU-West).	Failure	of	one	device	will	be	recovered	by	another.	Additionally,	stream	data	is	always
written	to	an	underlying	filesystem.	You	can	set	how	long	this	data	is	retained	in	the	filesystem	by	using	the	TTL
(Time	To	Live)	setting.	A	best	practice	is	to	configure	the	stream	data	TTL	long	enough	to	ensure	that	data	is	not
dropped	in	the	event	of	a	consumer	group	interruption	(e.g.	a	pipeline	restart)	and	while	corrective	actions	are
taken.

In	addition	to	these	data	redundancy	measures	inside	OLP,	the	recommended	best	practice	is	to	ensure	regularly
tested	backups	exist.	Secure	data	backups,	in	the	form	of	one	or	more	duplicate	catalogs,	can	be	assigned	a
narrower	set	of	permissions	to	further	limit	who	can	delete	those	backups.

Data	Security

25



Create	a	Catalog

If	you	have	data	you	want	to	bring	to	the	HERE	Open	Location	Platform,	you	need	to	create	a	catalog	to	organize
the	data.	A	catalog	is	a	collection	of	data	that	is	logically	managed	as	a	single	set.	Catalogs	contain	layers	that
represent	different	types	of	data	and	that	can	be	overlaid	spatially	to	construct	a	complete	digital	map.	For
example,	a	catalog	may	contain	a	map	that	includes	layers	for	road	attributes,	topology,	and	signs.

To	create	a	catalog	using	the	Portal:

1.	 Click	Data.
2.	 Click	Add	Catalog	then	click	New	Catalog.
3.	 Define	the	catalog's	metadata	by	filling	in	the	following	fields.

The	information	you	provide	in	these	fields	helps	you	and	others	find	and	understand	the	data	in	the	catalog.
We	recommend	giving	careful	thought	to	the	metadata	you	provide	so	that	it	is	as	easy	as	possible	to	find	and
share	catalogs	effectively.	For	examples	of	metadata,	see	the	HERE-provided	catalogs	in	the	Portal.

Catalog	Name:	A	user-friendly	name	for	the	catalog.	This	is	the	name	that	is	displayed	when	browsing
catalogs.
Catalog	ID:	The	ID	to	use	when	referring	to	this	catalog	programatically.	Catalog	IDs	must	be	unique	across
all	catalogs	in	the	HERE	Open	Location	Platform.	This	ID	will	be	part	of	the	catalog's	HERE	Resource	Name
(HRN).

Note:	Catalog	IDs

Catalog	IDs	are	publicly	visible	since	they	are	part	of	the	catalog	HRN.	Do	not	include	private	or	company
confidential	information	when	you	specify	a	catalog	ID.	Catalog	names	are	private	by	default,	which	means	you
can	add	your	private	or	confidential	information	in	this	field.

Catalog	Summary:	A	brief	summary	of	the	catalog.
Catalog	Description:	A	detailed	description	of	the	catalog	and	what	it	contains.
Tags:	Keywords	that	help	find	the	catalog	when	searching	in	the	Portal.

4.	 Click	Save.

It	may	take	a	few	minutes	to	create	the	catalog.	You	will	see	a	notification	banner	when	the	catalog	is	created.

Once	the	catalog	is	created	you	can	add	layers	to	the	catalog.	You	can	either	create	a	new	layer	in	the	catalog
or	add	a	layer	from	another	catalog.	For	more	information,	see:

Creating	a	Layer
Adding	a	Layer	from	Another	Catalog

By	default,	the	user	who	creates	a	catalog	has	manage,	read,	and	write	permissions.	For	information	about
giving	other	users	access	to	the	catalog,	see	Sharing	a	Catalog.

Note

It	may	take	several	minutes	for	a	new	catalog	to	appear	in	the	list	of	catalogs	returned	by	the	Data	Client
Library,	CLI,	and	REST	API.

Create	a	Catalog

26



Create	a	Catalog

27



Delete	a	Catalog

You	can	delete	a	catalog	if	you	have	manage	permissions	for	the	catalog.	This	action	deletes	the	catalog	and	all
layers	and	partitions	within	that	catalog.

Warning

Deleting	a	catalog	is	permanent	and	cannot	be	undone.

To	delete	a	catalog	using	the	Portal:

1.	 Click	Data.
2.	 Browse	to	the	catalog	that	you	want	delete	and	select	the	catalog	to	open	it.
3.	 Click	More	>	Delete	catalog.

Note

It	may	take	several	minutes	for	a	deleted	catalog	to	be	removed	from	the	list	of	catalogs	returned	by	the	Data
Client	Library,	CLI,	and	REST	API.

Delete	a	Catalog

28



Share	a	Catalog

You	can	share	catalogs	with	users,	apps,	and	groups.	You	must	have	manage	permission	to	the	catalog	in	order	to
share	it.

1.	 In	the	HERE	Open	Location	Platform	Portal,	click	Data.
2.	 Select	the	catalog	you	want	to	share.
3.	 Click	the	Sharing	tab.	If	you	do	not	see	this	tab,	you	do	not	have	manage	permission	and	cannot	share	the

catalog.
4.	 Specify	the	app,	user,	or	group	with	whom	you	want	to	share	the	catalog.
5.	 Choose	the	permissions	to	grant	to	the	app,	user,	or	group:

read	-	Grants	the	ability	to	get	data	and	metadata	from	the	catalog.
write	-	Grants	the	ability	to	publish	data	and	metadata	to	the	catalog.
manage	-	Grants	the	ability	to	change	catalog	settings,	including	sharing.	Also	grants	the	ability	to	change
the	settings	of	layers	in	the	catalog.

6.	 Click	Grant.

Share	a	Catalog

29



Edit	Catalog	Metadata

Catalog	metadata	can	be	edited	by	anyone	with	manage	permissions	for	the	catalog.

Hint

This	topic	describes	how	to	edit	catalog	metadata	using	the	HERE	Open	Location	Platform	Portal.	You	can	also	edit
catalog	metadata	using	the	REST	API.	For	more	information	about	editing	catalog	metadata	using	REST,	see	the
Data	API	Developer's	Guide.

To	edit	catalog	metadata	using	the	Portal:

1.	 Click	Data.
2.	 Browse	to	the	catalog	that	you	want	edit	and	click	the	catalog	to	open	it.
3.	 Click	More	>	Edit	info.

For	information	about	the	metadata	fields,	see	Creating	a	Catalog.

Edit	Metadata

30

https://developer.here.com/olp/documentation/data-store/content/data_dev_guide/index.html


Work	With	GeoJSON	Data

The	HERE	Open	Location	Platform	supports	the	use	of	GeoJSON	data.	GeoJSON	is	a	format	for	encoding	geographic
data	using	JSON.	The	GeoJSON	format	defines	a	structure	for	geometries,	features,	and	feature	collections	of
feature	objects	with	geographic	geometries	such	as	Points,	LineStrings,	and	Polygons,	and	free-form	name:value
properties.	The	GeoJSON	specification	is	maintained	by	the	Internet	Engineering	Task	Force	(IETF).	For	complete
details,	see	the	GeoJSON	specification.

Note

Older	versions	of	the	GeoJSON	standard	supported	custom	coordinate	systems.	The	HERE	Open	Location	Platform
only	supports	the	World	Geodetic	System	1984	(WGS84)	coordinate	system.

Configure	a	Layer	for	GeoJSON	Data

When	creating	a	layer	for	GeoJSON	data,	configure	the	layer	as	follows:

The	partitioning	scheme	must	be	HERE	Tile.
The	layer	type	must	be	volatile	or	versioned.
The	content	type	must	be	application/vnd.geo+json.

Partition	GeoJSON	Data

A	GeoJSON		FeatureCollection		contains	multiple	feature	objects,	each	of	which	has	some	geometry	tying	it	to	the
map.	A	single	FeatureCollection	might	have	millions	of	feature	objects	spread	over	the	whole	world.	If	the
	FeatureCollection		is	very	large	or	the	feature	objects	are	spread	over	a	large	geographic	area,	you	may	want	to
divide	the		FeatureCollection		into	multiple		FeatureCollection		objects,	each	stored	in	its	own	HERE	Tile	partition.

The	decision	of	when	to	divide	a	large		FeatureCollection		depends	on	what	you	plan	to	do	with	the	data	and	how
complex	individual	feature	objects	are.	Some	tasks	can	be	done	with	millions	of	features	per	tile,	while	others	can
be	slow	even	with	thousands	of	features.	As	a	general	rule	for	visualizing	data,	one	partition	should	have	less	than
20,000	features,	or	less	than	5,000	if	they	are	markers	(Point	features	without	a	Radius).

One	way	to	divide	a	large		FeatureCollection		into	multiple		FeatureCollection		objects	is	based	on	the	center	point
(centroid)	of	each	feature.	To	do	this,	you	iterate	over	the		FeatureCollection		and	calculate	the	centroid	of	each
feature.	Then,	you	map	each	centroid	to	the	HERE	Tile	which	overlaps	that	point.	In	the	end,	all	feature	objects	are
mapped	to	a	HERE	Tile.	Each	resulting	HERE	Tile	contains	a	single		FeatureCollection		which	in	turn	contains	all
features	whose	centroid	overlaps	that	particular	HERE	Tile.	In	this	way	a	large		FeatureCollection		becomes	multiple
	FeatureCollection		objects	which	can	be	processed	in	parallel.

You	can	also	divide	a	large		FeatureCollection		based	on	the	first	coordinate	of	the	feature	geometry	rather	than
the	centroid.

Custom	GeoJSON	Style	Properties

Work	With	GeoJSON	Data

31

https://tools.ietf.org/html/rfc7946


The	HERE	Open	Location	Platform	supports	several	custom	properties	that	you	can	use	to	add	visual	styling	to
features	when	rendered	in	the	Portal	or	using	the	Visualization	Library.	These	properties	are	not	part	of	the
GeoJSON	specification,	but	you	can	add	them	to	the		properties		member	of	any		features		object,	which	is
designed	to	take	custom	properties.	You	can	add	the	following	properties:

	tooltip		renders	a	pop-up	message	when	you	mouse	over	on	the	feature.	If	the		tooltip		property	is	not	set,
the	pop-up	is	displayed	with	the	list	of	all	other	configured		properties		for	the	feature.
You	can	use		style.color		and		style.fill		to	modify	the	feature	color.	You	can	set	the	color	in	any	format	that
is	supported	by	THREE.Color():		0xff0000	,		rgb(255,	0,	0)	,		rgb(100%,	0%,	0%)	,		skyblue	,		hsl(0,	100%,	50%)	.
	style.width		is	a	property	intended	for		LineString		and		MultiLineString	.	It	defines	the	width	of	the	line
measured	in	pixels.	The	default	width	is	1px.
	radius		is	a	property	intended	for		Point		and		MultiPoint	.	It	defines	the	radius	for	the	circle	measured	in
meters.

Note	that	when	using		MultiPoint	,	the	defined	properties	will	be	the	same	for	all	points.	The	same	rule	applies	to
	MultiLineString		and		MultiPolygon	.

For	more	information,	see	the	Visualization	Library	Developer's	Guide.

Note

You	must	have	the	HERE	Workspace	Plan	to	use	the	Visualization	Library.

Work	With	GeoJSON	Data

32

https://threejs.org/docs/#api/math/Color
https://developer.here.com/olp/documentation/data-visualization-library/dev_guide/index.html


Create	a	Layer

Once	you	have	created	a	catalog,	you	can	create	or	add	layers	to	it.	A	layer	is	a	set	of	partitions	of	a	specific	data
type,	functional	property,	and	structure.	You	can	use	layers	to	segment	data	based	on	semantics.	For	example,	in	a
catalog	you	can	have	one	layer	for	road	signs	and	another	layer	for	road	topology.	You	can	also	use	layers	to
segment	data	based	on	version	schema.	Layers	can	be	overlaid	spatially	to	construct	a	complete	digital	map.	For
more	information,	see	Layers.

When	creating	a	layer,	consider	what	layers	you	need	based	on	what	data	you	want	to	ingest	and	how	you	want	to
logically	organize	that	data.

To	create	a	layer	using	the	Portal:

1.	 Click	Data.
2.	 Browse	to	the	catalog	that	you	want	to	contain	the	new	layer	and	select	the	catalog	to	open	it.
3.	 Click	Add	New	Layer.
4.	 Define	the	metadata	for	the	layer	by	filling	in	the	following	fields.

Layer	Name:	A	user-friendly	name	for	the	layer	that	is	displayed	when	browsing	layers.
Layer	ID:	The	ID	to	use	when	referring	to	this	layer	programmatically.	Layer	IDs	must	be	unique	within	the
catalog.
Layer	Summary:	A	brief	description	of	the	data	in	the	layer.
Layer	Description:	A	detailed	description	of	the	layer	and	what	it	contains.
Tags:	Keywords	that	help	find	the	catalog	when	searching	in	the	Portal.
Cost	Allocation	Tags:	One	or	more	free-form	tags	which	are	used	to	group	billing	records	together.

5.	 Select	a	layer	type.	For	information	about	the	layer	types,	see	Layers.

6.	 Configure	the	layer.	For	more	information	for	configuring	each	layer	type,	see:

Stream	Layer	Settings
Versioned	Layer	Settings
Volatile	Layer	Settings
Index	Layer	Settings

7.	 Click	Save.

It	may	take	a	few	minutes	to	create	the	layer.	You	will	see	a	notification	banner	when	the	layer	is	created,	and
the	layer	will	appear	in	the	catalog.

Create	a	Layer

33



Stream	Layer	Settings

You	can	configure	stream	layer	settings	when	creating	a	layer	in	a	catalog.

Note

Data	in	stream	layers	is	encrypted	and	stored	for	the	amount	of	time	specified	in	the	layer's	retention	setting,	also
known	as	Time-To-Live	(TTL).

Maximum	Throughput

You	can	specify	the	maximum	throughput	for	data	going	into	the	layer	and,	separately,	the	maximum	throughput
for	data	going	out	of	the	layer.	The	HERE	Open	Location	Platform	starts	throttling	inbound	messages	when	the
inbound	rate	exceeds	the	inbound	throughput.	It	starts	throttling	outbound	messages	when	the	total	outbound
rate	to	all	consumers	exceeds	the	outbound	throughput.

The	default	value	for	inbound	throughput	is	4	MBps	and	the	default	outbound	throughput	is	8	MBps.	You	can
specify	up	to	32	MBps	for	inbound	and	64	MBps	for	outbound.

Catalogs	in	the	OLP	Marketplace	have	a	maximum	outbound	throughput	of	2	MBps.

We	recommend	that	you	set	the	outbound	throughput	to	be	at	least	the	expected	number	of	consumers	(users	and
pipelines)	times	the	inbound	throughput.	The	output	rate	can	be	higher	if	some	consumers	"replay"	recent	data.
The	inbound	throughput	must	not	be	more	than	the	outbound	throughput.	If	it	is,	the	consumer	cannot	read	all	the
data	that	the	producer	provides.

Retention

A	stream	layer	can	be	configured	with	a	retention	time	value,	also	known	as	Time-To-Live	or	TTL.	The	TTL	value
defines	the	minimum	length	of	time	that	a	message	remains	available	for	consumption.

Generally,	TTL	allows	consumers	to	receive	all	published	messages	in	various	error	case	scenarios,	such	as
temporary	network	connectivity	failure,	reboot	of	a	client,	and	so	on.

Messages	are	removed	from	the	layer	after	the	TTL	time	has	elapsed,	but	not	exactly	at	the	retention	time	specified
by	the	TTL	setting.	Messages	may	remain	in	the	system	for	a	period	of	time	after	the	TTL	time	has	elapsed.	You	are
not	charged	for	data	storage	beyond	the	TTL	setting.

The	TTL	value	is	applied	to	all	messages	published	to	a	layer.

Specifying	a	larger	TTL	value	is	especially	useful	when	the	data	producer	expects	consumers	to	replay	(re-consume)
recent	data.	For	example,	if	a	layer	stores	vehicle	sensor	data	the	consumer	wants	to	compare	results	of	different
algorithms	to	identify	a	particular	road	or	vehicle	condition,	and	the	consumer	needs	real	data	for	three	recent
hours	to	be	consumed	several	times,	then	a	TTL	of	four	or	more	hours	would	be	appropriate.	Another	example	is
consuming	all	the	data	that	has	been	received	within	the	last	hour,	every	hour	(provided	that	TTL	is	set	for	more
than	one	hour).

The	valid	range	of	TTL	values	is	from	10	minutes	to	3	days.	The	default	value	is	1	hour.

Create	a	Layer

34



Content	Type

The	content	type	specifies	the	media	type	to	use	to	identify	the	kind	of	data	in	the	layer.

Content	Encoding

The	content	encoding	setting	determines	whether	to	use	compression	to	reduce	the	size	of	data	stored	in	the	layer.
To	enable	compression,	specify	gzip.

If	you	are	using	the	Data	Client	Library,	the	zipping	and	unzipping	of	data	is	handled	automatically.

If	you	are	using	the	Data	API,	you	must	zip	data	before	writing	it	to	the	layer.	When	reading	data,	the	data	you
receive	is	in	gzip	format,	so	you	are	responsible	for	unzipping	it.

When	gzip	encoding	is	enabled,	the	partition	metadata	field		compressedDataSize		contains	the	size	of	the
compressed	data	and		dataSize		contains	the	size	of	the	uncompressed	data.

Schema

Specifying	a	schema	enables	you	to	share	data	with	others	by	defining	for	others	how	to	consume	the	data.	For
more	information,	see	Schemas.

Coverage

The	geographic	area	that	this	layer	covers.	This	setting	controls	which	areas	of	the	world	are	highlighted	in	the
layer's	coverage	map	in	the	Portal.

Create	a	Layer

35



Versioned	Layer	Settings

This	topic	describes	the	configuration	settings	for	a	versioned	layer.	You	configure	these	settings	when	you	create	a
layer	in	a	catalog.

Partitioning

The	partitioning	scheme	determines	how	partitions	in	the	layer	are	named.	Use	HERE	Tile	partitioning	for	map	data
and	use	generic	partitioning	for	other	kinds	of	data.	For	more	information,	see	Partitions.

Content	Type

The	content	type	specifies	the	media	type	to	use	to	identify	the	kind	of	data	in	the	layer.

Content	Encoding

The	content	encoding	setting	determines	whether	to	use	compression	to	reduce	the	size	of	data	stored	in	the	layer.
To	enable	compression,	specify	gzip.

If	you	are	using	the	Data	Client	Library,	the	zipping	and	unzipping	of	data	is	handled	automatically.

If	you	are	using	the	Data	API,	you	must	zip	data	before	writing	it	to	the	layer.	When	reading	data,	the	data	you
receive	is	in	gzip	format,	so	you	are	responsible	for	unzipping	it.

When	gzip	encoding	is	enabled,	the	partition	metadata	field		compressedDataSize		contains	the	size	of	the
compressed	data	and		dataSize		contains	the	size	of	the	uncompressed	data.

Schema

Specifying	a	schema	enables	you	to	share	data	with	others	by	defining	for	others	how	to	consume	the	data.	For
more	information,	see	Schemas.

Checksum	Algorithm

The	digest	property	specifies	the	algorithm	used	by	the	data	publisher	to	generate	a	checksum	for	each	partition	in
the	layer.	By	specifying	a	digest	algorithm	for	the	layer,	you	communicate	to	data	consumers	the	algorithm	to	use
to	verify	the	integrity	of	the	data	they	retrieve	from	the	layer.

You	can	specify	a	digest	only	when	creating	a	layer.	Once	the	digest	is	set,	you	cannot	change	it.	If	you	specify
"undefined"	as	the	digest,	you	cannot	specify	a	digest	after	the	layer	is	created.

When	choosing	a	digest	algorithm,	consider	the	following:

SHA-256	is	recommended	for	applications	where	strong	data	security	is	required
MD5	and	SHA-1	is	acceptable	when	the	purpose	of	applying	a	checksum	is	to	verify	data	integrity	during	transit.

Including	a	checksum	is	optional,	but	if	you	intend	to	provide	checksums	for	partitions	in	this	layer	you	should
specify	the	algorithm	you	will	use.

Create	a	Layer

36



Note

The	HERE	Open	Location	Platform	does	not	verify	that	the	algorithm	you	specify	here	is	the	one	used	to	generate
the	actual	checksums,	so	it	is	up	to	the	data	publisher	to	ensure	that	the	algorithm	specified	here	is	the	one	used
in	the	publishing	process.

For	more	information	about	common	algorithms,	see	Secure	Hash	Algorithms.

Coverage

The	geographic	area	that	this	layer	covers.	This	setting	controls	which	areas	of	the	world	are	highlighted	in	the
layer's	coverage	map	in	the	Portal.

Create	a	Layer

37

https://en.wikipedia.org/wiki/Secure_Hash_Algorithms


Volatile	Layer	Settings

You	can	configure	volatile	layer	settings	when	you	create	a	layer	in	a	catalog.

Note

Data	in	volatile	layers	is	not	encrypted	in	this	release	of	the	HERE	Open	Location	Platform.

Package	Type

The	package	type	controls	the	amount	of	data	you	can	store	in	the	layer.

PACKAGE	TYPE CAPACITY	(GB)

experimental 0.416

small 2.085

medium 10.11

large 21.315

All	package	types	have	very	high	availability,	except	for	the	experimental	package,	which	has	moderate	availability.

For	the	small,	medium,	and	large	package	types,	the	read	load	does	not	impact	the	the	performance	of	write
operations.	This	means	that	for	these	package	types,	as	the	number	of	consumers	increases,	there	is	no	impact	on
how	fast	data	can	be	written	into	the	layer.

For	the	experimental	package	type,	the	read	load	may	impact	write	performance.

If	you	do	not	specify	a	package	type,	the	experimental	type	is	used	by	default.

Maximum	Memory	Policy

When	a	volatile	layer	is	full,	a	decision	needs	to	be	made	on	what	action	should	be	taken.	The	following	options	are
available:

	FailOnWrite	:	the	write	operation	will	fail	and	an	error	code	will	be	returned	to	the	client.
	ReplaceLessRecentlyUsedPartition	:	The	volatile	layer	keeps	track	of	when	each	partition	was	written	and	read.
When	no	space	is	available	in	the	layer,	the	partition	that	has	not	been	accessed	for	the	longest	time	will	be
automatically	removed	to	create	space	for	the	new	partition.	Note	that	if	removing	one	partition	does	not
create	enough	space,	several	partitions	may	be	removed.

If	you	do	not	specify	a	maximum-memory-policy,		FailOnWrite		is	used	by	default.

Retention

A	volatile	layer	can	be	configured	with	a	retention	time	value,	also	known	as	Time-To-Live	or	TTL.	The	TTL	value
defines	the	length	of	time	partitions	in	the	layer	will	exist.	After	the	retention	time	elapses	for	a	partition,	the
partition	is	removed.	Specifying	a	TTL	value	is	especially	useful	when	the	validity	period	of	partitions	in	the	layer	is

Create	a	Layer

38



known	in	advance.	For	example,	if	a	layer	stores	traffic	incidents	which	are	known	to	expire	within	24	hours,	then
the	TTL	should	be	set	to	24	hours.

Since	data	in	volatile	layers	is	not	encrypted,	you	should	also	consider	how	long	you	want	unencrypted	data	to
remain	in	the	layer	when	choosing	a	retention	value.	The	longer	the	retention	time,	the	longer	unencrypted	data
remains	in	the	layer.

If	you	are	setting	the	retention	time	using	the	Portal,	the	unit	is	minutes.	The	valid	range	is	1	minute	to	10080
minutes	(seven	days).	The	default	is	60	minutes.

If	you	are	setting	the	retention	time	using	the	Data	API,	the	unit	is	milliseconds.	The	valid	range	is	1	millisecond	to
6.048e+8	milliseconds	(6.048	x	10 	milliseconds).

Partitioning

The	partitioning	scheme	determines	how	partitions	in	the	layer	are	named.	Use	HERE	Tile	partitioning	for	map	data
and	use	generic	partitioning	for	other	kinds	of	data.	For	more	information,	see	Partitions.

Content	Type

The	content	type	specifies	the	media	type	to	use	to	identify	the	kind	of	data	in	the	layer.

Content	Encoding

The	content	encoding	setting	determines	whether	to	use	compression	to	reduce	the	size	of	data	stored	in	the	layer.
To	enable	compression,	specify	gzip.

If	you	are	using	the	Data	Client	Library,	the	zipping	and	unzipping	of	data	is	handled	automatically.

If	you	are	using	the	Data	API,	you	must	zip	data	before	writing	it	to	the	layer.	When	reading	data,	the	data	you
receive	is	in	gzip	format,	so	you	are	responsible	for	unzipping	it.

When	gzip	encoding	is	enabled,	the	partition	metadata	field		compressedDataSize		contains	the	size	of	the
compressed	data	and		dataSize		contains	the	size	of	the	uncompressed	data.

Schema

Specifying	a	schema	enables	you	to	share	data	with	others	by	defining	for	others	how	to	consume	the	data.	For
more	information,	see	Schemas.

Checksum	Algorithm

The	digest	property	specifies	the	algorithm	used	by	the	data	publisher	to	generate	a	checksum	for	each	partition	in
the	layer.	By	specifying	a	digest	algorithm	for	the	layer,	you	communicate	to	data	consumers	the	algorithm	to	use
to	verify	the	integrity	of	the	data	they	retrieve	from	the	layer.

You	can	specify	a	digest	only	when	creating	a	layer.	Once	the	digest	is	set,	you	cannot	change	it.	If	you	specify
"undefined"	as	the	digest,	you	cannot	specify	a	digest	after	the	layer	is	created.

When	choosing	a	digest	algorithm,	consider	the	following:

8

Create	a	Layer

39



SHA-256	is	recommended	for	applications	where	strong	data	security	is	required
MD5	and	SHA-1	is	acceptable	when	the	purpose	of	applying	a	checksum	is	to	verify	data	integrity	during	transit.

Including	a	checksum	is	optional,	but	if	you	intend	to	provide	checksums	for	partitions	in	this	layer	you	should
specify	the	algorithm	you	will	use.

Note

The	HERE	Open	Location	Platform	does	not	verify	that	the	algorithm	you	specify	here	is	the	one	used	to	generate
the	actual	checksums,	so	it	is	up	to	the	data	publisher	to	ensure	that	the	algorithm	specified	here	is	the	one	used
in	the	publishing	process.

For	more	information	about	common	algorithms,	see	Secure	Hash	Algorithms.

Coverage

The	geographic	area	that	this	layer	covers.	This	setting	controls	which	areas	of	the	world	are	highlighted	in	the
layer's	coverage	map	in	the	Portal.

Create	a	Layer

40

https://en.wikipedia.org/wiki/Secure_Hash_Algorithms


Index	Layer	Settings

An	index	layer	has	a	user-defined	structure	and	it	can	contain	up	to	four	attributes,	one	of	which	must	be	a	time
attribute.	An	index	layer	contains	the	metadata	(values	of	the	index	attributes)	plus	some	additional	information
such	as	the	data	handle	for	the	data	blob,	the	size	of	the	data,	timestamps,	and	checksums.

Note

Data	in	index	layers	is	encrypted	and	stored	for	the	amount	of	time	specified	in	the	layer's	retention	setting,	also
known	as	Time-To-Live	(TTL).

Retention

An	index	layer	can	be	configured	with	a	retention	time	value,	also	known	as	Time-To-Live	or	TTL.	The	TTL	value
defines	the	number	of	days	that	records	are	kept	in	the	layer	and	available	for	query.	After	the	expiration	of	the
TTL,	the	record	is	eligible	for	removal	(actual	deletion	may	take	24	hours	after	the	expiration).	This	TTL	value	is
applied	to	all	records	published	to	the	layer.

Setting	a	TTL	for	your	index	layer	enables	you	to	automate	your	data	management	practices	so	that	you	can	more
easily	maintain	your	data	retention	and	cost.	Selecting	limitless	retention	requires	you	to	manually	manage	these
variables	as	your	data	will	continue	to	accumulate	as	long	as	it	is	ingested	and	processed	by	your	pipeline.
Alternatively,	a	TTL	setting	of	seven	days	will	start	deleting	data	records	when	they	are	seven	days	old.	All	newer
data	records	are	retained	until	they	also	reach	seven	days	in	age.

The	minimum	TTL	is	7	days.	This	is	also	the	default	TTL	setting.

Note

Once	the	layer	is	created,	you	cannot	update	the	retention	setting.

Index	Attributes	(Keys)

Index	attributes	define	the	keys	by	which	you	can	query	data	in	the	index	layer.	For	example,	you	can	define	an
index	layer	to	index	sensor	data	from	automobiles	using	the	attributes	time,	tile	ID,	and	event	type.	You	can	then
develop	a	pipeline	using	the	Data	Archiving	Library	to	aggregate	data	based	on	these	attributes.	After	messages	are
indexed	into	the	index	layer,	you	can	query	the	data	based	on	the	time,	tile	ID	and	event	type.

The	index	layer	requires	time	(either	ingestion	time	or	event	time)	as	an	attribute	to	facilitate	the	archival	and
querying	of	stream	data	where	time	is	typically	an	important	factor.	While	time	is	required,	the	remaining	three
optional	attributes	can	be	used	to	index	and	query	by	other	aspects	of	the	data	such	as	location.

All	index	attributes,	also	known	as	keys,	have	two	properties:		name		and		type	.	The		name		attribute	is	used
primarily	in	the	query	API	to	express	the	query	predicate.	The		type		attribute	defines	the	data	type	stored	in	the
attribute.	The	supported	types	are:

Standard	types:
	bool		-	a	Boolean	value.
	int		-	a	signed	integer,	up	to	64	bits.
	string		-	a	string	of	Unicode	characters	with	a	maximum	length	of	40.

Create	a	Layer

41



OLP	types:
	heretile		-	represents	the	tile	id	in	the	HERE	tile	map	tiling	scheme.	The		heretile		type	has	an	attribute
zoomLevel	which	represents	the	size	of	the	tile.	It	is	not	mutable.
	timewindow		-	represents	the	finest	time	granularity	at	which	the	data	will	be	indexed	and	later	queried.
The		timewindow		is	a	time	slice,	not	just	a	point	in	time.	For	example,	if	you	specify	a	time	window	of	one
hour,	the	value	of	the		timewindow		attribute	for	all	records	with	an	event	time	in	a	given	60-minute	window
will	have	the	same	index	value	for		timewindow	.	You	can	specify	the	duration	for	a	time	window,	which
represents	the	time	slice	length	and	is	not	mutable.	Both	the		timewindow		value	and		timewindow		duration
are	expressed	in	milliseconds,	and	the	time	value	is	milliseconds	since	Epoch.	Note	that	the		timewindow	
value	is	represented	as	the	timestamp	of	the	beginning	of	the	window.

Note

Once	the	layer	is	created,	you	cannot	update	the	indexing	attributes.

Attribute	Validation	Rules

Index	attributes	must	conform	to	the	following	rules:

1.	 The	maximum	attribute	name	length	is	64	characters.
2.	 Attribute	names	must	begin	with	a	Unicode	letter.	Subsequent	characters	can	be	letters,	underscores	(_),	and

digits	(0-9).
3.	 The		zoomLevel		attribute	for	the		heretile		type	must	be	from	0	to	14.
4.	 The		duration		attribute	of	the		timewindow		type	must	be	from	600000	(10	minutes)	to	86400000	(24	hours).
5.	 The		timewindow		attribute	is	required.
6.	 An	index	can	have	no	more	than	one		timewindow		attribute	and	one		heretile		attribute.
7.	 Each	index	attribute	must	have	a	unique	name.
8.	 The	index	attribute	name	cannot	be	any	of	the	following:	"id",	"size",	"checksum",	"metadata"	or	"timestamp".

These	are	reserved	for	default	attributes.

Content	Type

The	content	type	specifies	the	media	type	to	use	to	identify	the	kind	of	data	in	the	layer.

Content	Encoding

The	content	encoding	determines	whether	to	use	compression	to	reduce	the	size	of	data	stored	in	the	layer.	To
enable	compression,	specify	gzip.

If	you	are	using	the	Data	Client	Library,	the	zipping	and	unzipping	of	data	is	handled	automatically.

If	you	are	using	the	Data	API,	you	must	zip	data	before	writing	it	to	the	layer.	When	reading	data,	the	data	you
receive	is	in	gzip	format,	so	you	are	responsible	for	unzipping	it.

When	gzip	encoding	is	enabled,	the	partition	metadata	field		size		contains	the	size	of	the	compressed	data.
Otherwise,	it	will	contain	the	size	of	the	uncompressed	data.

Schema

Create	a	Layer

42



Specifying	a	schema	enables	you	to	share	data	with	others	by	defining	for	others	how	to	consume	the	data.	For
more	information,	see	Schemas.

Coverage

The	geographic	area	that	this	layer	covers.	This	setting	controls	which	areas	of	the	world	are	highlighted	in	the
layer's	coverage	map	in	the	Portal.

Create	a	Layer

43



Reconfigure	a	Layer

A	layer	can	be	reconfigured	by	anyone	with	manage	permissions	for	the	catalog	that	contains	the	layer.	However,
there	are	a	few	layer	configurations	that	cannot	be	edited,	such	as:

Layer	type
Volatile	package	size
Streaming	throughput

If	you	want	to	change	any	non-editable	layer	configuration,	you	need	to	delete	the	catalog,	which	deletes	the	layer
and	its	data,	then	create	a	new	catalog	and	layer.

To	reconfigure	a	layer	using	the	Portal:

1.	 Click	Data.
2.	 Browse	to	the	layer	you	want	edit	and	select	the	layer	to	open	it.
3.	 Click	More	then	click	Reconfigure	layer.

For	information	about	the	configuration	fields,	see	Creating	a	Layer.

Reconfigure	a	Layer

44



Update	a	Schema

To	update	a	schema,	use	the	Schema	Archetype	tool	in	the	HERE	Open	Location	Platform	SDK	to	create	a	new
version	of	the	schema	and	push	it,	and	its	dependencies	and	documentation,	to	the	HERE	Open	Location	Platform.
For	more	information,	see	the	SDK	Developer	Guide.

Note

You	must	have	the	HERE	Workspace	Plan	to	have	access	to	the	HERE	Open	Location	Platform	SDK.

Update	a	Schema

45

https://developer.here.com/olp/documentation/sdk-developer-guide/content/dev_guide/index.html


Browse	Schemas

Schemas	define	the	organization	of	data	in	a	layer,	including	the	structure	of	the	data	and	its	content.	You	can
browse	the	schemas	available	to	you	using	the	HERE	Open	Location	Platform	Portal.	For	example,	you	may	want	to
browse	schemas	to	look	for	one	to	use	when	creating	a	catalog.

To	browse	schemas	using	the	Portal:

1.	 Click	Data.
2.	 In	the	upper	right	corner,	click	Browse	schemas.

The	list	of	schemas	only	contains	those	that	you	have	permission	to	read.

3.	 Click	on	a	schema	to	view	its	details,	including	dependency	artifacts	and	documentation.

To	download	the	schema,	click	More	then	Download	schema.

Browse	Schemas

46



Create	a	Schema

If	the	schemas	provided	in	the	HERE	Open	Location	Platform	do	not	describe	your	data	or	support	your	use	case
adequately,	you	can	create	your	own	schema.	To	create	a	schema	you	must	use	the	HERE	Open	Location	Platform
SDK.	To	access	the	SDK	from	the	Portal,	click	the	Resources	tab	then	click	Download	the	SDK.

Note

You	must	have	the	HERE	Workspace	Plan	to	have	access	to	the	HERE	Open	Location	Platform	SDK.

Use	the	SDK	to	create	a	schema	and	deploy	it	to	the	HERE	Open	Location	Platform	artifact	repository.	For
documentation	on	creating	and	deploying	a	schema,	go	to	the	SDK	Developer's	Guide	and	browse	to	the	topic
Create	and	Extend	Schemas.

The	schema	should	now	be	visible	in	the	list	of	schemas	available	in	the	HERE	Open	Location	Platform	Portal.	The
schema	also	appears	in	a	dropdown	list	of	schemas	when	configuring	a	data	layer.

Schemas	are	only	visible	to	the	user	who	created	it.	To	share	a	schema	with	other	users,	see	Share	a	Schema.

Create	a	Schema

47

https://developer.here.com/olp/documentation/sdk-developer-guide/content/dev_guide/index.html


Share	a	Schema

Sharing	a	schema	is	a	necessary	step	in	sharing	a	catalog.	When	you	share	a	catalog,	the	catalog	and	its	layers	are
shared,	but	not	the	layers'	schemas.	You	should	share	the	schemas	used	in	the	catalog	so	that	users	of	the	catalog
have	access	to	the	definition	of	the	layers'	data	structure.	You	must	have	manage	permissions	to	the	schema	in
order	to	share	it.

To	share	a	schema	using	the	Portal:

1.	 Click	Data.
2.	 In	the	upper	right	corner,	click	Browse	schemas.
3.	 Select	the	schema	you	want	to	share.
4.	 Click	the	Sharing	tab.

Note

If	you	do	not	see	the	Sharing	tab	it	is	because	you	do	not	have	manage	permissions	for	the	schema.

5.	 Click	Share.

6.	 Select	or	enter	a	user,	app,	or	client	ID	then	choose	which	permissions	to	grant.
Read	-	Grants	the	ability	to	view	the	schema	data	and	metadata.
Modify	-	Grants	the	ability	to	read,	edit,	and	delete	the	schema.
Share	-	Grants	the	ability	to	share	the	schema	with	others.

7.	 Click	Grant.

Share	a	Schema

48



Delete	a	Schema

To	delete	a	schema	you	must	either	be	the	creator	of	the	schema	or	the	schema	creator	must	grant	you	delete
permission.

Caution

Use	caution	when	deleting	a	schema	that	has	been	shared.	When	a	schema	is	shared,	others	will	likely	create
dependencies	on	the	schema.	For	example,	another	user’s	business	might	rely	on	a	processing	pipeline	which
depends	on	the	schema.	Deleting	the	schema	will	cause	the	pipeline	which	depends	on	it	to	break	and	adversely
impact	the	user’s	business.

To	delete	a	schema	using	the	Portal:

1.	 Click	Data.
2.	 In	the	upper	right	corner,	click	Browse	schemas.
3.	 Select	the	schema	you	want	to	delete.
4.	 Click	More	then	click	Delete	schema.

Delete	a	Schema

49


	Introduction
	Catalogs
	Layers
	Schemas
	Partitions
	HERE Resource Names
	Data Limits and Cost
	Data Security
	Create a Catalog
	Delete a Catalog
	Share a Catalog
	Edit Metadata
	Work With GeoJSON Data
	Create a Layer
	Reconfigure a Layer
	Update a Schema
	Browse Schemas
	Create a Schema
	Share a Schema
	Delete a Schema



